
Lecture-30: Compound and Non-Stationary Poisson Processes

1 Compound Poisson process
A compound Poisson process is a real-valued right-continuous process (Zt : t ≥ 0) with the following properties.

i finite jumps: for all ω ∈Ω, sampled path t 7→ Zt(ω) has finitely many jumps in finite intervals,

ii independent increments: for all t,s≥ 0;Zt+s−Zt is independent of past (Zu : u≤ t),

iii stationary increments: for all t,s≥ 0, distribution of Zt+s−Zt depends only on s and not on t.

For each ω ∈Ω and n ∈ N, we can define time and size of nth jump

S0(ω) = 0, Sn(ω) = inf{t > Sn−1 : Zt(ω) 6= ZSn−1(ω)}
X0(ω) = 0, Xn(ω) = ZSn(ω)−ZSn−1(ω).

Let (Nt : t > 0) be the simple counting process associated with the number of jumps in (0, t]. Then, Sn and Xn are
the respectively the arrival instant and the size of the nth jump, and we can write Zt = ∑

Nt
i=1 Xi. Let Fs = σ(Zu : u ∈

(0,s]), and F• = (Fs : s> 0) be the natural filtration associated with the process Z. Clearly, jump times (Sn : n∈N)
are stopping times with respect to filtration F•.

Proposition 1.1. A stochastic process (Zt , t > 0) is a compound Poisson process iff its jump times form a Poisson
process and the jump sizes form an iid random sequence independent of the jump times.

Proof. It is clear that the simple counting process Nt can be completely determined by (Zu : u 6 t), i.e. Nt ∈ Ft .
Since Zt+s−Zt = ∑

Nt+s
i=Nt

Xi, and the compound Poisson processes have independent increments, it follows that the
increment (Nt+s−Nt : s > 0) and (XN(t)+ j : j ∈N) are independent of the past Ft . Let’s assume that step sizes are
positive, then Sn = inf{t > Sn−1 : Zt > ZSn−1} and {Nt+s−Nt = 0}= {Zt+s−Zt 6 0}. From the stationarity of the
increments it follows that the probability P{Nt+s−Nt = 0} is independent of t, and hence (Nt : t > 0) is a Poisson
process, and that stopping time in the process (Sn : n ∈ N) is almost surely finite.

The compound Poisson process has the Markov property from stationary and independent increment property.
Further, since each sample path t 7→ Zt is right continuous, the process satisfies the strong Markov property at each
almost sure stopping time. In particular, Xn is independent of the past (Zu : u 6 Sn−1) and identically distributed to
X1 for each n∈N. It follows that the jump sizes X1,X2, . . . are iid random variables, independent of arrival instants
S1,S2, . . . . Similar arguments can be used to show for negative jump sizes. For real jump sizes, we can form two
independent Poisson processes with negative and positive jumps, and the superposition of these two processes is
Poisson.

Conversely, let Zt = ∑
Nt
i=1 Xi where Nt is a Poisson process independent of the random iid sequence X1,X2, . . . .

Since Nt is finite for any finite t, it follows that the compound Poisson process Z has finitely many jumps in finite
intervals. For any finite n∈N and finite intervals Ii for i∈ [n], we can write Z(Ii) =∑

N(Ii)
k=1 Xik, where Xik denotes the

kth jump size in the interval Ii. Since the independent sequence (N(Ii) : i ∈ [n]) and (Xn : n ∈N) are also mutually
independent, it follows that Z(Ii) are independent. Further, the stationarity of the increments of the compound
process is inferred from the distribution of Z(Ii), which is

P{Z(Ii)6 x}= ∑
m∈N0

P{Z(Ii)6 x,N(Ii) = m}= ∑
m∈N0

P{
m

∑
k=1

Xik 6 x}P{N(Ii) = m}

Example 1.2. Examples of compound Poisson processes.
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• Arrival of customers in a store is a Poison process Nt . Each customer i spends an iid amount Xi
independent of the arrival process.

Y0 = 0, Yn =
n

∑
i=1

Xi, i ∈ [n].

Now define Zt = YNt as the amount spent by the customers arriving in time t. Then {Zt , t ≥ 0} is a
compound Poisson Process.

• Let the time between successive failures of a machine be independent and exponentially distributed.
The cost of repair is iid random at each failure. Then the total cost of repair in a certain time t is a
compound Poisson Process.

2 Non-stationary Poisson process
From the characterization of Poisson process just stated, we can generalize to non-homogeneous Poisson Process.
In this case, the rate of Poisson Process λ is time varying. A simple counting process (N(t) : t > 0) is said to be
possibly non-stationary Poisson process if N(0) = 0 and it has independent increments. That is,

1. for each ω ∈Ω, each sample path t 7→ Nt(ω) is right continuous, non-decreasing, integer valued, N(0) = 0,
and has jumps of unit size only,

2. for any t,s > 0, the random variable Nt+s−Nt is independent of the past (Nu : u 6 t).

Let m(t) = ENt for all t > 0. From non-decreasing property of counting processes, it follows that the mean is
also non-decreasing in time t. From right continuity of counting process and the monotone convergence theorem,
it follows that mean function is also right continuous. The time inverse of mean is defined as

τ(t) = inf{s > 0 : m(s)> t}, t > 0.

It follows that the following events are identical, {s> τ(t)}= {m(s)> t}. Therefore, if m is a continuous function,
we would have m(τ(t)) = t. Since inverse of a non-decreasing function is also non-decreasing, we conclude that
τ(t) is non-decreasing function of time t. We can also see that by taking t1 6 t2. Then for all s > τ(t2) we have
m(s)> t2 > t1. In particular, we have m(s)> τ(t1) and hence τ(t2)> τ(t1). From the definition of τ(t), it follows
that {s > τ(m(t))}= {m(s)> m(t)}. Hence,

τ(m(t)) = sup{s > 0 : m(s)6 m(t)}.

If m is differentiable for all t > 0, then we can define λ (t) = m′(t) for all s > 0. In higher dimensions,
we have m(A) = EN(A) for some Borel measurable set A ⊆ Rd . If m is differentiable for all x ∈ Rd , then for
A = ∏

d
i=1(xi,xi + hi] we can write the intensity Λ(x) = limh1,...,hd→0

m(A)
h1...hd

. In other words, we have m(A) =
EN(A) =

∫
x∈A Λ(x)dx.

Theorem 2.1. Let Nt be a non-stationary Poisson process, such that m(t) = ENt is continuous. Then, the process
M : Ω×R+→ N0 is a stationary Poisson process with unit rate, defined point-wise as

Mt(ω), Nτ(t)(ω), t > 0,ω ∈Ω.

Proof. Since τ is non-decreasing and continuous and N is a simple counting process, it follows that M is right
continuous, non-decreasing, integer valued, and simple. Fix t > s ≥ 0 and let s′ , τ(s) and t ′ , τ(t). Then, by
definition of Mt , t ′,s′ and independent increment property of non-stationary Poisson process N, we have Mt−Ms =
Nt ′−Ns′ is independent of the past (Nu : u 6 s′) = (Mu : u 6 s). That is, the process M has independent increments.
For stationarity, we see that mean rate of increment is unity and stationary,

E[Mt −Ms|Mu;u 6 s] = E[Nt ′ −Ns′ |Nu;u 6 s′] = m(t ′)−m(s′) = m(τ(t))−m(τ(s)) = t− s.

Corollary 2.2. Let m(t) be a continuous non-decreasing function. Then, S1,S2, . . . are the arrival instants in a
non-stationary Poisson process Nt with mean function m(t) = ENt iff m(S1),m(S2), . . . are the arrivals instants of
a stationary Poisson process of unit rate.
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Proof. We can write the nth arrival instant S′n of unit-rate stationary Poisson process Mt , in terms of the nth arrival
instant Sn of non-stationary Poisson process Nt as

S′n = inf{t > 0 : τ(t)> Sn}= sup{t > 0 : m(Sn)> t}= m(Sn).

This corollary implies that Sn ∈ (s, t] if and only if m(Sn) ∈ (m(s),m(t)]. Therefore, thr number of arrivals in
(s, t] equals the number of arrivals for unit-rate stationary Poisson process in (m(s),m(t)]. Hence, we conclude
that for m(s, t] = m(t)−m(s)

P{Nt −Ns = k}= e−m(s,t] m(s, t]k

k!
, k ∈ N0.

We will see that the inter-arrival times for the non-stationary Poisson process Nt , defined as

T0 = 0, Tn = Sn−Sn−1, n ∈ N,

are not independent anymore.

Proposition 2.3. For a non-stationary Poisson process with continuous mean function m(t), we have

P{Tn+1 > t|S1,S2, . . . ,Sn}= exp(−m(Sn + t)+m(Sn)) .

Proof. We define events A= {m(Sn+1)>m(Sn+t)} and B= {m(Sn+1)≥m(Sn+t)}. Then, we have A⊆{Tn+1 >
t} ⊆ B. Hence, we can write

P{A|S1,S2, . . . ,Sn} ≤ P{Tn+1 > t|S1,S2, . . . ,Sn}.

The arrival instants S1, . . . ,Sn determine m(S1), . . . ,m(Sn),m(Sn + t). Further, since m(Sn+1)−m(Sn) is the inter-
arrival time of the stationary Poisson process M(t), it is independent of S1,S2, . . . ,Sn

P{A|S1, . . . ,Sn}= P{m(Sn+1)−m(Sn)> m(Sn + t)−m(Sn)|S1, . . . ,Sn}= exp(−m(Sn + t)+m(Sn)) .

Result follows from the continuity of the exponential distribution.
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