Lecture-31: Poisson Point Processes

1 Poisson Point Processes

A simple point process ® = {S; € R? : i € N} is a random countable collection of distinct points in the d-
dimensional Euclidean space RY. Let F be the collection of Borel measurable sets in R?. Then, the associated
counting process (N(A) : A € J) is defined as N(A) = Ycn (5,4} For a sample realization of a simple point
process @, we observe that dN(x) = 0 for all x ¢ ®. Hence, for any function f : RY — R, we have
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The finite dimensional distribution of N is joint distribution of (N(A;),...,N(Ax)) for some finite k € N and
bounded sets Ay,...,Ax € F. A counting process N has the completely independence property, if for any col-
lection of finite disjoint and bounded sets Ay, ...,Ay € J,
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A Poisson point process of intensity measure A is defined in terms of the finite-dimensional distribution of
the associated counting process, as
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for some finite k € N, mutually disjoint and bounded sets Ay, ...,A; € F and A(A) £ [,_, dA(x).
Theorem 1.1. Following are equivalent for a simple counting process N.

i Process N is Poisson with intensity measure A.

ii_ Process N has the completely independence property, and EN(A) = A(A).
iii_ The intensity measure A is bounded for bounded A € F, and N(A) is a Poisson with parameter A(A).

Proposition 1.2. For a finite k € N, disjoint bounded sets Ay, ...,Ax € F, numbers ny,...,n; € Ng, let A = U{»‘:lA,-
andn= Zﬁ;l n;. Then for a Poisson point process, we have

P(N(A)) =ny,...,N(Ay) = m|N(A) = n) = n! ﬁ(/}\((%))
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Remark 1. Above proposition implies that n points in a bounded set A are iid distributed in this set with density
function (( )) for x € A.

2 Laplace functional

The Laplace functional £ of a point process ® and associated counting process N is defined for all non-negative
function f : RY — R as

calf)=Bexp (- [ FaNG) ).

For simple function f(x) = YX_, #;1{x € A;}, we can write the Laplace functional

Lo (f) =Eexp( Ztl

as a function of the vector (11,1, ..,#), a joint Laplace transform of the random vector (N(A}),...,N(Ay)). This
way, one can compute all finite dimensional distribution of the counting process N.



Proposition 2.1. The Laplace functional of the Poisson process with intensity measure A is
calpy=ep (- [ (1= n@n).
Proof. For a bounded Borel measurable set A C RY, consider g(x) = f(x)1{x € A}. Then,
Lo(g) = Eexp(— [ 8(})dN() = Eexp(~ [ F(x)aN ().

Clearly dN(x) = 8,1{x € ®} and hence we can write £La(g) = Eexp (— Ls.cana f(Si)). We know that the proba-
bility of N(A) = |®(A)| = n points in set A is given by
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Given there are n points in set A, the density of n point locations are independent and given by
mA(dx)1{x; € A}
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Hence, we can write the Laplace functional as

Lo(g) = o AA) Z Asﬁ)nﬁ/A ef(xj)lt\(zzﬁ) = exp (_ /Rd(l —eg(X))A(dx)> .
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Result follows from taking increasing sequences of sets A; 1 R¢ and monotone convergence theorem. [

2.1 Superposition of point processes

Theorem 2.2. The superposition of independent Poisson point processes with intensities Ay is a Poisson point
process with intensity measure Y ;. Ay, if and only if the latter is a locally finite measure.

2.2 Thinning of point processes

Consider a probability retention function p : R¢ — [0, 1] and a point process ®. The thinning of point process
® = {S, € R? : n € N} with the retention function p is a point process such that

B ={S, €D :Y(S,) =1},
where Y (S,) is an independent indicator stochastic process at each point S,, and EY (S,,) = p(S,).

Theorem 2.3. The thinning of the Poisson point process of intensity measure A with the retention probability
function p yields a Poisson point process of intensity measure pA with

(PA)A) = [ pAE)

for all bounded Borel measurable A C R,

Proof. Let A C R be a bounded Boreal measurable set, and let f : RY — R be a non-negative function. Let N?
be the associated counting process to the thinned point process ®”. Hence, for any set A € F, we have NP(A) =
Yicao(a) Y (Si). Consider the Laplace functional of the thinned point process ®” for a non-negative function g(x) =
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The first equality follows from the definition of Laplace functional and taking nested expectations. Second equality
follows from the fact that the distribution of all points of a Poisson point process are iid. Since Y is a Bernoulli
process independent of the underlying process @ with E[Y (S;)] = p(S;), we get

Ele /SYS)|s; € d(A)] = Ele ™S p(8;) + (1 - p(S))|Si € D(A)].
From the distribution /X(E;‘)) for x € ®(A) for the Poisson point process @, we get

cane) = T ([ (00 T+ (1= p)a@0) ) =exp (- [ (1-eHDpa@ ).

Result follows from taking increasing sequences of sets A; 1 R¢ and monotone convergence theorem. O
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