
Lecture 01: Introduction to Stochastic Processes

1 Probability Review

A probability space (Ω,F , P ) consists of set of all possible outcomes denoted by Ω and called
a sample space, a collection of subsets F of sample space, and a non-negative set function
probability P : F → [0, 1], with the following properties.

1. The collection of subsets of F is a σ-algebra, that is it contains an empty set and is closed
under complements and countable unions.

2. Set function P satisfies P (Ω) = 1, and for every countable pair-wise disjoint collection
{An ∈ F : n ∈ N}, we have

P (
⋃
n

An) =
∑
n

P (An).

There is a natural order of inclusion on sets through which we can define monotonicity of prob-
ability set function P . To define continuity of this set function, we define limits of sets. For a
sequence of sets {An : n ∈ N}, we define limit superior and limit inferior of this sequence
respectively as

lim sup
n
An =

⋂
n

⋃
k≥n

Ak, lim inf
n
An =

⋃
n

⋂
k≥n

Ak.

We say that limit exists if the limit superior and limit inferior are equal, and is equal to the limit
of the sequence of sets.

Theorem 1.1. Probability set function is monotone and continuous.

Proof. Let A ⊆ B both subsets be elements of F , then from the additivity of probability over
disjoint sets A and B \A, we have

P (B) = P (A ∪B \A) = P (A) + P (B \A) ≥ P (A).

Monotonicity follows from non-negativity of probability set function, that is since P (B \A) > 0.
For continuity from below, we take an increasing sequence of sets {An : n ∈ N}, such that
An ⊆ An+1 for all n. Then, it is clear that An ↑ A = ∪nAn. We can define disjoint sets
{En : n ∈ N}, where

E1 = A1, En = An \An−1, n ≥ 2.

The disjoint sets En’s satisfy ∪ni=1Ei = An for all n ∈ N and ∪nEn = ∪nAn. From the above
property and the additivity of probability set function over disjoint sets, it follows that

P (A) = P ∪n En =
∑
n∈N

P (En) = lim
n∈N

n∑
i=1

P (Ei) = lim
n∈N

P ∪ni=1 Ei = lim
n∈N

P (An).
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For continuity from below, we take decreasing sequence of sets {An : n ∈ N}, such that An+1 ⊆
An for all n. We can form increasing sequence of sets {Bn : n ∈ N} where Bn = Acn. Then, the
continuity from above follows from continuity from above.

A real valued random variable X on a probability space (Ω,F , P ) is a function X : Ω→ R
such that for every x ∈ R, we have {ω ∈ Ω : X(ω) ≤ x} = X−1(−∞, x] ∈ F . The distribution
function F : R→ [0, 1] for this random variable X is defined as

F (x) = (P ◦X−1)(−∞, x], ∀x ∈ R.

Let g : R→ R be a function. Then, the expectation of g(X) is defined as

Eg(X) =

∫
x∈R

g(x)dF (x).

Theorem 1.2. Distribution function F of a random variable X is non-negative, monotone
increasing, continuous from the right, and has countable points of discontinuities. Further, if
P ◦X−1(R) = 1, then

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1.

Proof. Non-negativity and monotonicity of distribution function follows from non-negativity and
monotonicity of probability set function, and the fact that for x1 < x2

X−1(−∞, x1] ⊆ X−1(−∞, x2].

Let xn ↓ x be a decreasing sequence of real numbers. Then, the right continuity of distribution
function follows from the continuity from above of probability set functions. We take decreasing
sets {An : n ∈ N}, where

An = {ω ∈ Ω : X(ω) ≤ xn}.

2 Deterministic and stochastic models

Evolution of a deterministic system is characterized by a set of equations, with each run leading
to the same outcome given the same initial conditions. Evolution of a stochastic system is at
least partially random, and each run of the process leads to potentially a different outcome. Each
of these different runs are called a realization or a sample path of the stochastic process.

We are interested in modeling, analysis, and design of stochastic systems. Following are
some of the stochastic systems from different disciplines of science and engineering.

• Evolution of number of molecules due to chemical reaction, where the time to form
new molecules is uncertain and it depends on density of other molecules.

• Financial commodities like stock prices, currency exchange rates fluctuate with time.
These can be modeled by random walks. One can provide probabilistic predictions and
optimal buying and selling strategies using these models.
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• Machines that detect photons, have a dead time post a successful detection. This adds
uncertainty in estimating photon density. These processes can be modeled by an on-off
process.

• A contagious disease can spread very quickly across a region. This is similar to a
content getting viral on internet. One can model spread of epidemics on network by
Urn models.

• Counting number of earthquakes that occur everyday at a certain location. These can
be modeled by a counting process, and inter-arrival time of the quakes can be estimated
to make probabilistic predictions.

• A mother cell takes a random amount of time to subdivide and create a daughter cell.
A daughter cell takes certain random time to mature, and become a mother cell. A
mother cell dies after certain number of sub-divisions. One is interested in finding out
the asymptotic behavior of population density.

• Popularity of a page depends on how quickly one can reach it from other pages on the
Internet. Equilibrium distribution of certain random walks on graphs can be used to
estimate page ranks on the web.

3 Stochastic Processes

A collection of random variables {Xt ∈ X : t ∈ T} each defined on the same probability space
(Ω,F , P ) is called a random process for an arbitrary index set T and arbitrary state space X .

3.1 Classification

If the state space T is countable, the stochastic process is called discrete-time stochastic process
or random sequence. When the state space T is uncountable, it is called continuous-time
stochastic process. However, T doesn’t have to be time, if the index set is space, and then
the stochastic process is spatial process. When T = Rn × [0,∞), stochastic process X(t) is a
spatio-temporal process. State space X can also be countable or uncountable.

We list some examples of each such stochastic process.

• Discrete random sequence: brand switching, discrete time queues, number of people at
bank each day.

• Continuous random sequence: stock prices, currency exchange rates, waiting time in
queue of nth arrival, workload at arrivals in time sharing computer systems.

• Discrete random process: counting processes, population sampled at birth-death in-
stants, number of people in queues.

• Continuous random process: water level in a dam, waiting time till service in a queue,
location of a mobile node in a network.
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3.2 Specification

To define a measure on collection of random variables, we need to know it’s joint distribution
F : RT → [0, 1]. To this end, for any x ∈ RTwe need to know

F (x) = P

(⋂
t∈T
{ω ∈ Ω : Xt(ω) ≤ xt}

)
.

When the index set T is infinite, any function of the above form would be zero if xt is finite for
all t ∈ T . Therefore, we only look at the values of F (x) when xt ∈ R for indices t in a finite set
S and xt = ∞ for all t /∈ S. We can define a finite dimensional distribution for any finite
set S ⊆ T and xS = {xs ∈ R : s ∈ S},

FS(x) = P

(⋂
s∈S
{ω ∈ Ω : Xs(ω) ≤ xs}

)
.

Set of all finite dimensional distributions of the stochastic process {Xt : t ∈ T} characterizes its
distribution completely. Simpler characterizations of a stochastic process X(t) are in terms of its
moments. That is, the first moment such as mean, and the second moment such as correlations
and covariance functions.

mX(t) , EXt, RX(t, s) , EXtXs, CX(t, s) , E(Xt −mX(t))(Xs −mX(s)).

Some examples of simple stochastic processes.

i Xt = A cos 2πt, where A is random. The finite dimensional distribution is given by

FS(x) = P ({A cos 2πs ≤ xs, s ∈ S}) .

The moments are given by

mX(t) = (EA) cos 2πt, RX(t, s) = (EA2) cos 2πt cos 2πs, CX(t, s) = Var(A) cos 2πt cos 2πs.

ii Xt = cos(2πt+ Θ), where Θ is random and uniformly distributed between (−π, π]. The
finite dimensional distribution is given by

FS(x) = P ({cos(2πs+ Θ) ≤ xs, s ∈ S}) .

The moments are given by

mX = 0, RX(t, s) =
1

2
cos 2π(t− s), CX(t, s) = RX(t, s).

iii Xn = Un for n ∈ N, where U is uniformly distributed in the open interval (0, 1).

iv Zt = At+B where A and B are independent random variables.

3.3 Independence

Recall, given the probability space (Ω,F , P ), two events A,B ∈ F are independent events if

P (A ∩B) = P (A)P (B).
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Random variables X,Y defined on the above probability space, are independent random
variables if for all x, y ∈ R

P{X(ω) ≤ x, Y (ω) ≤ y} = P{X(ω) ≤ x}P{Y (ω) ≤ y}.

Two stochastic process Xt, Yt for common index set T are independent stochastic processes
if for all finite subsets I, J ⊆ T

P ({Xi ≤ xi, i ∈ I} ∩ {Yj ≤ yj , j ∈ J}) = P ({Xi ≤ xi, i ∈ I})P ({Yj ≤ yj , j ∈ J}) .

3.4 Examples of Tractable Stochastic Processes

In general, it is very difficult to characterize a stochastic process completely in terms of its finite
dimensional distribution. However, we have listed few analytically tractable examples below,
where we can completely characterize the stochastic process.

3.4.1 Independent and identically distributed processes

Let {Xt : t ∈ T} be an independent and identically distributed (iid) random process, with
common distribution F (x). Then, the finite dimensional distribution for this process for any
finite S ⊆ T can be written as

FS(x) = P ({Xs(ω) ≤ xs, s ∈ S}) =
∏
s∈S

F (xs).

It’s easy to verify that the first and the second moments are independent of time indices. Since
Xt = X0 in distribution,

mX = EX0, RX = EX2
0 , CX = Var(X0).

3.4.2 Stationary Processes

A stochastic process Xt is stationary if all finite dimensional distributions are shift invariant,
that is for finite S ⊆ T and t > 0, we have

FS(x) = P ({Xs(ω) ≤ xs, s ∈ S}) = P ({Xs+t(ω) ≤ xs, s ∈ S}) = Ft+S(x).

In particular, all the moments are shift invariant. Since Xt = X0 and (Xt, Xs) = (Xt−s, X0) in
distribution, we have

mX = EX0, RX(t− s, 0) = EXt−sX0, CX(t− s, 0) = RX(t− s, 0)−m2
X .

3.4.3 Markov Processes

A stochastic process Xt is Markov if conditioned on the present state, future is independent of
the past. That is, for any ordered index set T containing any two indices u > t, we have

P ({Xu(ω) ≤ xu|Xs, s ≤ t}) = P ({Xu(ω) ≤ xu|Xt}).

We will study this process in detail in coming lectures.
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3.4.4 Lévy Processes

A stochastic process Xt indexed by positive reals is Lévy if the following conditions hold.

i X0 = 0, almost surely.

ii The increments are independent: For any 0 ≤ t1 < t2 < · · · < tn < ∞, Xt2 − Xt1 , Xt3 −
Xt2 , . . . , Xtn −Xtn−1 are independent.

iii The increments are stationary: For any s < t, Xt −Xs, is equal in distribution to Xt−s.

iv Continuous in probability: For any ε > 0 and t ≥ 0 it holds that limh→0 P (|Xt+h −Xt| >
ε) = 0.

Two examples of Lévy processes are Poisson process and Wiener process. The distribution
of Poisson process at time t is Poisson with rate λt and the distribution of Wiener process
at time t is zero mean Gaussian with variance t.

Theorem 3.1. A Lévy process has infinite divisibility. That is, for all n ∈ N

EeθXt =
(
EeθXt/n

)n
.

Further, if the process has finite moments µn(t) = EXn
t then the following Binomial identity

holds

µn(t+ s) =

n∑
k=0

(
n

k

)
µk(t)µn−k(s).

Proof. The first equality follows from the independent and stationary increment property of the
process, and the fact that we can write

Xt =

n∑
k=1

X kt
n
−X (k−1)t

n
.

Second property also follows from the the independent and stationary increment property of the
process, and the fact that we can write

Xn
t+s = (Xt +Xt+s −Xt)

n =

n∑
k=0

(
n

k

)
Xn
t (Xt+s −Xt)

n−k.
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