
Lecture 02: Bernoulli Processes

1 Construction of Probability Space

Consider an experiment, where an infinite sequence of trials is conducted. Each trial has two
possible outcomes, success or failure, denoted by S and F respectively. Any outcome of the
experiment is an infinite sequence of successes and failures, e.g.

ω = (S, F, F, S, F, S, . . . ).

The collection of all possible outcomes of this experiment will be our sample space Ω = {S, F}N.
The ith projection of an outcome sequence ω ∈ Ω is denoted by ωi ∈ {S, F}. We consider a
σ-algebra F on this space generated by all finite subsets of the sample space Ω. That is,

F = σ({ω ∈ Ω : ωi ∈ {S, F},∀i ∈ I ⊂ N for finite I}).

We further assume that each trial is independent and identically distributed, with common
distribution of a single trial

P{ωi = S} = p, P{ωi = F} = q , 1− p.

This assumption completely characterizes the probability measure over all elements of the σ-
algebra F . For a ∈ F and the number of successes n = |{i ∈ I : ai = S}| in I,

P (a) =
∏
i∈I

E1{ωi = ai} =
∏

i∈I:ωi=S

E1{ωi = S}
∏

i∈I:ωi=F

E1{ωi = F} = pnq|I|−n.

Hence, we have completely characterized the probability space (Ω,F , P ). Further, we define a
discrete random process X : Ω→ {0, 1}N such that

Xn(ω) = 1{ωn = S}.

Since, each trial of the experiment is iid, so is each Xn.

2 Bernoulli Processes

For a probability space (Ω,F , P ), a discrete process X = {Xn(ω) : n ∈ N} taking value in {0, 1}N
is a Bernoulli Process with success probability p = EXn if {Xn : n ∈ N} are iid with common
distribution P{Xn = 1} = p and P{Xn = 0} = q.

i For products manufactured in an assembly line, Xn indicates the event of nth product
being defective.

ii At a fork on the road, Xn indicates the event of nth vehicle electing to go left on the
fork.
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For n = |{i ∈ S : 0 ≤ xi < 1}|, the finite dimensional distribution of X(ω) is given by

FS(x) =
∏
i∈S

P{Xi ≤ xi} = qn.

The mean, correlation, and covariance functions are given by

mX = EXn = p, RX = EXnXm = p2, CX = E(Xn − p)(Xm − p) = 0.

3 Number of Successes

For the above experiment, let Nn denote the number of successes in first n trials. Then, we have

Nn(ω) =

n∑
i=1

1{ωi = S} =

n∑
i=1

Xi(ω).

The discrete process {Nn(ω) : n ∈ N} is a stochastic process that takes discrete values in N0. In
particular, Nn ∈ {0, . . . , n}, i.e. the set of all outcomes is index dependent.

i For products manufactured in an assembly line, Nn indicates the number of defective
products in the first n manufactured.

ii At a fork on the road, Nn indicates the number of vehicles that turned left for first n
vehicles that arrived at the fork.

We can characterize the moments of this stochastic process

mN (n) = EXn = np, VarNn =

n∑
i=1

VarXi = npq.

Clearly, this process is not stationary since the first moment is index dependent. In the next
lemma, we try to characterize the distribution of random variable Nn.

Lemma 3.1. We can write the following recursion for Pn(k) , P{Nn(ω) = k}, for all n, k ∈ N

Pn+1(k) = pPn(k − 1) + qPn(k).

Proof. We can write using the disjoint union of probability events,

P{Nn+1 = k} = P{Nn+1 = k,Nn = k}+ P{Nn+1 = k,Nn = k − 1}.

Since {Nn+1 = k,Nn = j} = {Xn+1 = k − j,Nn = j}, from independence of Xns we have

P{Nn+1 = k} = P{Xn+1 = 0}P{Nn = k}+ P{Xn+1 = 1}P{Nn = k − 1}.

Result follows from definition of Pn(k).

Theorem 3.2. The distribution of number of successes Nn in first n trials of a Bernoulli process
is given by a Binomial (n, p) distribution

Pn(k) =

(
n

k

)
pkq(n−k).
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Proof. It follows from induction.

Corollary 3.3. The stochastic process {Nn : n ∈ N} has stationary and independent increments.

Proof. We can look at one increment

Nm+n −Nm =

n∑
i=1

Xi+m.

This increment is a function of (Xm+1, . . . , Xm+n) and hence independent of (X1, . . . , Xm).
The random variable Nm depends solely on (X1, . . . , Xm) and hence the independence follows.
Stationarity follows from the fact that Xis are iid and Nm+n − Nm is sum of n iid Bernoulli
random variables, and hence has a Binomial (n, p) distribution identical to that of Nn.

4 Times of Successes

For the above experiment, let Tk denote the trial number corresponding to kth success. Clearly,
Tk ≥ k. We can define it inductively as

T1 = inf{n ∈ N : Xn(ω) = 1}, Tk+1(ω) = inf{n > Tk : Xn(ω) = 1}.

For example, if X = (0, 1, 0, 1, 1, . . . ), then T1 = 2, T2 = 4, T3 = 5 and so on. The discrete process
{Tk(ω) : k ∈ N} is a stochastic process that takes discrete values in {k, k + 1, . . . }.

i For products manufactured in an assembly line, Tk indicates the number of products
inspected for kth defective product to be detected.

ii At a fork on the road, Tk indicates the number of vehicles that have arrived at fork for
kth left turning vehicle.

We first observe the following inverse relationship between number of nth successful trial Tn,
and number of successes in n trials.

Lemma 4.1. The following relationships hold between time of success and number of success

{Tk ≤ n} = {Nn ≥ k}, {Tk = n} = {Nn−1 = k − 1, Xn = 1}.

Proof. To see the first equality, we observe that {Tk ≤ n} is the set of outcomes, where XT1 =

XT2
= · · · = XTk

= 1, and
∑Tk

i=1Xi = k. Hence, we can write the number of successes in first n
trials as

Nn =

n∑
i=1

Xi =
∑
i>Tk

Xi +

Tk∑
i=1

Xi ≥ k.

Conversely, we notice that we can re-write the number of trials for ith success as

Ti = inf{m ∈ N : Nm = i}.
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Since Nn is non-decreasing in n, it follows that for the set of outcome such that {Nn ≥ k}, there
exists m ≤ n such that Tk = m ≤ n. For the second inequality, we observe that

{Tk = n} = {Tk ≤ n} ∩ {Tk ≥ n− 1}c = {Nn ≥ k} ∩ {Nn−1 ≥ k}c = {Nn−1 = k − 1, Nn = k}.

We can write the marginal distribution of process {Tk : k ∈ N} in terms of the marginal of
the process {Nn : n ∈ N} as

P{Tk ≤ n} =
∑
j≥k

Pn(j) =

∞∑
j=k

(
n

j

)
pjq(n−j), P{Tk = n} = pṖn−1(k − 1) =

(
n− 1

k − 1

)
pkqn−k.

Clearly, this process is not stationary since the first moment is index dependent. It is not
straightforward to characterize moments of Tk from its marginal distribution.

Lemma 4.2. The time of success is a Markov chain.

Proof. By definition, Tk depends only on Tk−1 and Xis for i > Tk. From independence of Xis,
it follows that

P{Tk = Tk−1 +m|Tk−1, Tk−2, . . . , T1} = P{Tk − Tk−1 = m|Tk−1} = qm−1p1{m > 0}.

Corollary 4.3. The time of success process {Tk : k ∈ N} has stationary and independent
increments.

Proof. From the previous lemma and the law of total probability, we see that∑
n∈N0

P{Tk − Tk−1 = m,Tk = n} = pqm−11{m > 0}.

Since, the increment in time of success follows a geometric distribution with success probabil-
ity p, we have mean of the increment E(Tk+1−Tk) = 1/p, and the variance VarTk+1 − Tk = q/p2.
This implies that we can write the moments of Tk as

ETk = E
k∑

i=1

(Ti − Ti−1) =
k

p
, VarTk = Var

k∑
i=1

(Ti − Ti−1) =
kq

p2
.

This shows that stationary and independent increments is a powerful property of a process and
makes the process characterization much simpler. Next, we show one additional property of this
process.

Lemma 4.4. The increments of time of success process {Tk : k ∈ N} are memoryless.

Proof. It follows from the property of a geometric distribution, that for positive integers m,n

P{Tk+1 − Tk > m+ n|Tk+1 − Tk > m} =
P{Tk+1 − Tk > m+ n}
P{Tk+1 − Tk > m}

= qn = P{Tk+1 − Tk > n}.
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