## Lecture 02: Bernoulli Processes

## 1 Construction of Probability Space

Consider an experiment, where an infinite sequence of trials is conducted. Each trial has two possible outcomes, success or failure, denoted by $S$ and $F$ respectively. Any outcome of the experiment is an infinite sequence of successes and failures, e.g.

$$
\omega=(S, F, F, S, F, S, \ldots)
$$

The collection of all possible outcomes of this experiment will be our sample space $\Omega=\{S, F\}^{\mathbb{N}}$. The $i$ th projection of an outcome sequence $\omega \in \Omega$ is denoted by $\omega_{i} \in\{S, F\}$. We consider a $\sigma$-algebra $\mathcal{F}$ on this space generated by all finite subsets of the sample space $\Omega$. That is,

$$
\mathcal{F}=\sigma\left(\left\{\omega \in \Omega: \omega_{i} \in\{S, F\}, \forall i \in I \subset \mathbb{N} \text { for finite } I\right\}\right)
$$

We further assume that each trial is independent and identically distributed, with common distribution of a single trial

$$
P\left\{\omega_{i}=S\right\}=p, \quad P\left\{\omega_{i}=F\right\}=q \triangleq 1-p
$$

This assumption completely characterizes the probability measure over all elements of the $\sigma$ algebra $\mathcal{F}$. For $a \in \mathcal{F}$ and the number of successes $n=\left|\left\{i \in I: a_{i}=S\right\}\right|$ in $I$,

$$
P(a)=\prod_{i \in I} \mathbb{E} 1\left\{\omega_{i}=a_{i}\right\}=\prod_{i \in I: \omega_{i}=S} \mathbb{E} 1\left\{\omega_{i}=S\right\} \prod_{i \in I: \omega_{i}=F} \mathbb{E} 1\left\{\omega_{i}=F\right\}=p^{n} q^{|I|-n} .
$$

Hence, we have completely characterized the probability space $(\Omega, \mathcal{F}, P)$. Further, we define a discrete random process $X: \Omega \rightarrow\{0,1\}^{\mathbb{N}}$ such that

$$
X_{n}(\omega)=1\left\{\omega_{n}=S\right\}
$$



## 2 Bernoulli Processes

For a probability space $(\Omega, \mathcal{F}, P)$, a discrete process $X=\left\{X_{n}(\omega): n \in \mathbb{N}\right\}$ taking value in $\{0,1\}^{\mathbb{N}}$ is a Bernoulli Process with success probability $p=\mathbb{E} X_{n}$ if $\left\{X_{n}: n \in \mathbb{N}\right\}$ are iid with common distribution $P\left\{X_{n}=1\right\}=p$ and $P\left\{X_{n}=0\right\}=q$.
i_ For products manufactured in an assembly line, $X_{n}$ indicates the event of $n$th product being defective.
ii_ At a fork on the road, $X_{n}$ indicates the event of $n$th vehicle electing to go left on the fork.

For $n=\left|\left\{i \in S: 0 \leq x_{i}<1\right\}\right|$, the finite dimensional distribution of $X(\omega)$ is given by

$$
F_{S}(x)=\prod_{i \in S} P\left\{X_{i} \leq x_{i}\right\}=q^{n}
$$

The mean, correlation, and covariance functions are given by

$$
m_{X}=\mathbb{E} X_{n}=p, \quad R_{X}=\mathbb{E} X_{n} X_{m}=p^{2}, \quad C_{X}=\mathbb{E}\left(X_{n}-p\right)\left(X_{m}-p\right)=0
$$

## 3 Number of Successes

For the above experiment, let $N_{n}$ denote the number of successes in first $n$ trials. Then, we have

$$
N_{n}(\omega)=\sum_{i=1}^{n} 1\left\{\omega_{i}=S\right\}=\sum_{i=1}^{n} X_{i}(\omega)
$$

The discrete process $\left\{N_{n}(\omega): n \in \mathbb{N}\right\}$ is a stochastic process that takes discrete values in $\mathbb{N}_{0}$. In particular, $N_{n} \in\{0, \ldots, n\}$, i.e. the set of all outcomes is index dependent.
i. For products manufactured in an assembly line, $N_{n}$ indicates the number of defective products in the first $n$ manufactured.
ii_ At a fork on the road, $N_{n}$ indicates the number of vehicles that turned left for first $n$ vehicles that arrived at the fork.

We can characterize the moments of this stochastic process

$$
m_{N}(n)=\mathbb{E} X_{n}=n p, \quad \operatorname{Var} N_{n}=\sum_{i=1}^{n} \operatorname{Var} X_{i}=n p q
$$

Clearly, this process is not stationary since the first moment is index dependent. In the next lemma, we try to characterize the distribution of random variable $N_{n}$.

Lemma 3.1. We can write the following recursion for $P_{n}(k) \triangleq P\left\{N_{n}(\omega)=k\right\}$, for all $n, k \in \mathbb{N}$

$$
P_{n+1}(k)=p P_{n}(k-1)+q P_{n}(k) .
$$

Proof. We can write using the disjoint union of probability events,

$$
P\left\{N_{n+1}=k\right\}=P\left\{N_{n+1}=k, N_{n}=k\right\}+P\left\{N_{n+1}=k, N_{n}=k-1\right\}
$$

Since $\left\{N_{n+1}=k, N_{n}=j\right\}=\left\{X_{n+1}=k-j, N_{n}=j\right\}$, from independence of $X_{n}$ s we have

$$
P\left\{N_{n+1}=k\right\}=P\left\{X_{n+1}=0\right\} P\left\{N_{n}=k\right\}+P\left\{X_{n+1}=1\right\} P\left\{N_{n}=k-1\right\}
$$

Result follows from definition of $P_{n}(k)$.
Theorem 3.2. The distribution of number of successes $N_{n}$ in first $n$ trials of a Bernoulli process is given by a Binomial ( $n, p$ ) distribution

$$
P_{n}(k)=\binom{n}{k} p^{k} q^{(n-k)}
$$

Proof. It follows from induction.
Corollary 3.3. The stochastic process $\left\{N_{n}: n \in \mathbb{N}\right\}$ has stationary and independent increments.
Proof. We can look at one increment

$$
N_{m+n}-N_{m}=\sum_{i=1}^{n} X_{i+m}
$$

This increment is a function of $\left(X_{m+1}, \ldots, X_{m+n}\right)$ and hence independent of $\left(X_{1}, \ldots, X_{m}\right)$. The random variable $N_{m}$ depends solely on $\left(X_{1}, \ldots, X_{m}\right)$ and hence the independence follows. Stationarity follows from the fact that $X_{i}$ s are iid and $N_{m+n}-N_{m}$ is sum of $n$ iid Bernoulli random variables, and hence has a $\operatorname{Binomial}(n, p)$ distribution identical to that of $N_{n}$.

## 4 Times of Successes

For the above experiment, let $T_{k}$ denote the trial number corresponding to $k$ th success. Clearly, $T_{k} \geq k$. We can define it inductively as

$$
T_{1}=\inf \left\{n \in \mathbb{N}: X_{n}(\omega)=1\right\}, \quad T_{k+1}(\omega)=\inf \left\{n>T_{k}: X_{n}(\omega)=1\right\}
$$

For example, if $X=(0,1,0,1,1, \ldots)$, then $T_{1}=2, T_{2}=4, T_{3}=5$ and so on. The discrete process $\left\{T_{k}(\omega): k \in \mathbb{N}\right\}$ is a stochastic process that takes discrete values in $\{k, k+1, \ldots\}$.
i_ For products manufactured in an assembly line, $T_{k}$ indicates the number of products inspected for $k$ th defective product to be detected.
ii_ At a fork on the road, $T_{k}$ indicates the number of vehicles that have arrived at fork for $k$ th left turning vehicle.

We first observe the following inverse relationship between number of $n$th successful trial $T_{n}$, and number of successes in $n$ trials.

Lemma 4.1. The following relationships hold between time of success and number of success

$$
\left\{T_{k} \leq n\right\}=\left\{N_{n} \geq k\right\}, \quad\left\{T_{k}=n\right\}=\left\{N_{n-1}=k-1, X_{n}=1\right\}
$$

Proof. To see the first equality, we observe that $\left\{T_{k} \leq n\right\}$ is the set of outcomes, where $X_{T_{1}}=$ $X_{T_{2}}=\cdots=X_{T_{k}}=1$, and $\sum_{i=1}^{T_{k}} X_{i}=k$. Hence, we can write the number of successes in first $n$ trials as

$$
N_{n}=\sum_{i=1}^{n} X_{i}=\sum_{i>T_{k}} X_{i}+\sum_{i=1}^{T_{k}} X_{i} \geq k
$$

Conversely, we notice that we can re-write the number of trials for $i$ th success as

$$
T_{i}=\inf \left\{m \in \mathbb{N}: N_{m}=i\right\}
$$

Since $N_{n}$ is non-decreasing in $n$, it follows that for the set of outcome such that $\left\{N_{n} \geq k\right\}$, there exists $m \leq n$ such that $T_{k}=m \leq n$. For the second inequality, we observe that

$$
\left\{T_{k}=n\right\}=\left\{T_{k} \leq n\right\} \cap\left\{T_{k} \geq n-1\right\}^{c}=\left\{N_{n} \geq k\right\} \cap\left\{N_{n-1} \geq k\right\}^{c}=\left\{N_{n-1}=k-1, N_{n}=k\right\} .
$$

We can write the marginal distribution of process $\left\{T_{k}: k \in \mathbb{N}\right\}$ in terms of the marginal of the process $\left\{N_{n}: n \in \mathbb{N}\right\}$ as

$$
P\left\{T_{k} \leq n\right\}=\sum_{j \geq k} P_{n}(j)=\sum_{j=k}^{\infty}\binom{n}{j} p^{j} q^{(n-j)}, \quad P\left\{T_{k}=n\right\}=p \dot{P}_{n-1}(k-1)=\binom{n-1}{k-1} p^{k} q^{n-k}
$$

Clearly, this process is not stationary since the first moment is index dependent. It is not straightforward to characterize moments of $T_{k}$ from its marginal distribution.

Lemma 4.2. The time of success is a Markov chain.
Proof. By definition, $T_{k}$ depends only on $T_{k-1}$ and $X_{i} \mathrm{~s}$ for $i>T_{k}$. From independence of $X_{i} \mathrm{~s}$, it follows that

$$
P\left\{T_{k}=T_{k-1}+m \mid T_{k-1}, T_{k-2}, \ldots, T_{1}\right\}=P\left\{T_{k}-T_{k-1}=m \mid T_{k-1}\right\}=q^{m-1} p 1\{m>0\}
$$

Corollary 4.3. The time of success process $\left\{T_{k}: k \in \mathbb{N}\right\}$ has stationary and independent increments.

Proof. From the previous lemma and the law of total probability, we see that

$$
\sum_{n \in \mathbb{N}_{0}} P\left\{T_{k}-T_{k-1}=m, T_{k}=n\right\}=p q^{m-1} 1\{m>0\} .
$$

Since, the increment in time of success follows a geometric distribution with success probability $p$, we have mean of the increment $\mathbb{E}\left(T_{k+1}-T_{k}\right)=1 / p$, and the variance $\operatorname{Var} T_{k+1}-T_{k}=q / p^{2}$. This implies that we can write the moments of $T_{k}$ as

$$
\mathbb{E} T_{k}=\mathbb{E} \sum_{i=1}^{k}\left(T_{i}-T_{i-1}\right)=\frac{k}{p}, \quad \quad \operatorname{Var} T_{k}=\operatorname{Var} \sum_{i=1}^{k}\left(T_{i}-T_{i-1}\right)=\frac{k q}{p^{2}}
$$

This shows that stationary and independent increments is a powerful property of a process and makes the process characterization much simpler. Next, we show one additional property of this process.

Lemma 4.4. The increments of time of success process $\left\{T_{k}: k \in \mathbb{N}\right\}$ are memoryless.
Proof. It follows from the property of a geometric distribution, that for positive integers $m, n$

$$
P\left\{T_{k+1}-T_{k}>m+n \mid T_{k+1}-T_{k}>m\right\}=\frac{P\left\{T_{k+1}-T_{k}>m+n\right\}}{P\left\{T_{k+1}-T_{k}>m\right\}}=q^{n}=P\left\{T_{k+1}-T_{k}>n\right\}
$$

