
Lecture 03: Poisson Process

1 Simple point processes
A simple point process is a collection of distinct points

Φ = {Sn ∈ Rd : n ∈ N},

such that |Sn| → ∞ as n→ ∞. In R+, one can order these points {Sn : n ∈ N}. Let N( /0) = 0 and denote
the number of points in a set A⊆ Rd by

N(A) = ∑
n∈N

1{Sn ∈ A}.

Then {N(A) : A ∈F} is called a counting process for the simple point process Φ. A counting process is
simple if the jump size is unity.

1. Point processes can model arrivals at classrooms, banks, hospital, supermarket, traffic inter-
sections, airports etc.

2. Point processes can model location of nodes in a network, such as cellular networks, sensor
networks, etc.

We can simplify this definition for d = 1. A stochastic process {N(t), t > 0} is a counting process if

1. N(0) = 0, and

2. for each ω ∈Ω, the map t 7→ N(t) is non-decreasing, integer valued, and right continuous.

Lemma 1.1. A counting process has finitely many jumps in a finite interval [0, t).

The points of discontinuity correspond to the arrival instants of the point process N(t). The nth
arrival instant is a random variable denoted Sn, such that

S0 = 0, Sn = inf{t ≥ 0 : N(t)> n}, n ∈ N.

The inter arrival time between (n−1)th and nth arrival is denoted by Xn and written as

Xn = Sn−Sn−1.

For a simple point process, we have

P{Xn = 0}= P{Xn 6 0}= 0.

General point processes in higher dimension don’t have any inter-arrival time interpretation.
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Figure 1: Sample path of a simple counting process.

Lemma 1.2. Simple counting process {N(t), t > 0} and arrival process {Sn : n ∈ N} are inverse pro-
cesses. That is,

{Sn 6 t}= {N(t)> n}.

Proof. Let ω ∈ {Sn 6 t}, then N(Sn) = n by definition. Since N is a non-decreasing process, we have
N(t)≥ N(Sn) = n. Conversely, let ω ∈ {N(t)> n}, then it follows from definition that Sn ≤ t.

Corollary 1.3. The following identity is true.

{Sn 6 t,Sn+1 > t}= {N(t) = n}.

Proof. It is easy to see that

{Sn+1 > t}= {Sn+1 6 t}c = {N(t)> n+1}c = {N(t)< n+1}.

Hence, the result follows by writing

{N(t) = n}= {N(t)> n,N(t)< n+1}= {Sn 6 t,Sn+1 > t}.

Lemma 1.4. Let Fn(x) be the distribution function for Sn, then

Pn(t), P{N(t) = n}= Fn(t)−Fn+1(t).

Proof. It suffices to observe that following is a union of disjoint events,

{Sn 6 t}= {Sn 6 t,Sn+1 > t}∪{Sn 6 t,Sn+1 6 t}.
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1.1 Stationary and independent increments
For an interval I = (s, t], the number of arrivals in the interval I is defined as N(I) =N(t)−N(s). Consider
an arbitrary collection of mutually exclusive intervals {I j : j ∈ [n]}, time index t > 0, and set of positive
integers {k j ∈ N0 : j ∈ [n]}. A counting process {N(t), t > 0} has stationary increments if

P{N(I j) = k j, j ∈ [n]}= P{N(t + I j) = k j, j ∈ [n]}.

A counting process {N(t), t > 0} has independent increments if

P{N(I j) = k j, j ∈ [n]}= ∏
j∈[n]

P{N(I j) = k j}.

Lemma 1.5. An arrival process {Sn,n ∈N0} has stationary and independent increments iff the sequence
of inter-arrival times {Xn : n ∈ N} are iid random variables.

Proof. We first suppose that {Xn : n ∈ N} is a sequence of iid random variables. Then Sn+m−Sm has the
same distribution as Sn and is independent of (X1, . . . ,Xm). Conversely, we suppose that {Sn : n ∈ N0}
has stationary and independent increments. Then, {Xn : n ∈ N} is a sequence of iid random variables by
looking at Xn = Sn−Sn−1.

Lemma 1.6. If a simple counting process {N(t), t > 0} has stationary and independent increments then
the sequence of inter-arrival times {Xn : n ∈ N} are iid random variables.

Proof. First, we notice that from inverse relationship, we have

{Xn > y}= {N(Sn−1)6 N(Sn−1 + y)< N(Sn)}= {N(Sn−1 + y)−N(Sn−1) = 0}.

To show that each inter-arrival time is identically distributed, we utilize the stationarity of the increments
of the counting process N(t), to observe

P{Sn−Sn−1 > y}=
∫

∞

0
P{N(y) = 0}dFn−1(t) = P{N(y) = 0}= P{X1 > y}.

To show that inter-arrival times are independent, it suffices to show that Xn is independent of Sn−1. Since
the increments of the counting process N(t) are independent, we see that

P{Sn−1 6 x,Xn > y}=
∫ x

0
P{N(y+ t)−N(t) = 0|Sn−1 = t}dFn−1(t)

=
∫ x

0
P{N(y+ t)−N(t) = 0|N(t) = n−1,N(s)< n−1,s < t}dFn−1(t)

= P{Xn > y}Fn−1(x).

2 Poisson process
A simple counting process {N(t), t > 0} is called a Poisson process with a finite positive rate λ , if the
inter-arrival times {Xn : n ∈ N} are iid random variables with an exponential distribution of rate λ . That
is, it has a distribution function F , such that

F(x) = P{X1 6 x}=

{
1− e−λx, x > 0
0, else.

For many proofs regarding Poisson processes, we partition the sample space with the disjoint events
{N(t) = n} for n ∈ N0. We need the following lemma that enables us to do that.
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Lemma 2.1. For any finite time t > 0, a Poisson process is finite almost surely.

Proof. By strong law of large numbers, we have

lim
n→∞

Sn

n
= E[X1] =

1
λ

a.s.

Fix t > 0 and we define a sample space subset M = {ω ∈ Ω : N(t)(ω) = ∞}. For any ω ∈M, we have
Sn(ω) 6 t for all n ∈ N. This implies limsupn

Sn
n = 0 and ω 6∈ {limn

Sn
n = 1

λ
}. Hence, the probability

measure for set M is zero.

2.1 Memoryless distribution
A random variable X with continuous support on R+, is called memoryless if

P{X > s}= P{X > t + s|X > t} ∀t,s ∈ R+.

Proposition 2.2. The unique memoryless distribution function with continuous support on R+ is the
exponential distribution.

Proof. Let X be a random variable with a memoryless distribution function F : R+ → [0,1]. It follows
that F̄(t), 1−F(t) satisfies the semi-group property

F̄(t + s) = F̄(t)F̄(s).

Since F̄(x)=P{X > x} is non-increasing in x∈R+, we have F̄(x)= eθx, for some θ < 0 from Lemma A.1.

2.2 Distribution functions
Lemma 2.3. Moment generating function of arrival times Sn is

E[eθSn ] =

{
λ n

(λ−θ)n , θ < λ

∞, θ > λ .

Lemma 2.4. Distribution function of Sn is given by

Fn(t), P{Sn ≤ t}= 1− e−λ t
n−1

∑
k=0

(λ t)k

k!
.

Theorem 2.5. Density function of Sn is Gamma distributed with parameters n and λ . That is,

fn(s) =
λ (λ s)n−1

(n−1)!
e−λ s.

Theorem 2.6. For each t > 0, the distribution of Poisson process N(t) with parameter λ is given by

P{N(t) = n)}= e−λ t (λ t)n

n!
.

Further, E[N(t)] = λ t, explaining the rate parameter λ for Poisson process.
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Proof. Result follows from density of Sn and recognizing that

Pn(t) = Fn(t)−Fn+1(t).

Corollary 2.7. Distribution of arrival times Sn is

Fn(t) = ∑
j≥n

Pj(t), ∑
n∈N

Fn(t) = EN(t).

Proof. First result follows from the telescopic sum and the second from the following observation.

∑
n∈N

Fn(t) = E ∑
n∈N

1{N(t)> n}= ∑
n∈N

P{N(t)> n}= EN(t).

A Poisson process is not a stationary process. That is, the finite dimensional distributions are not shift
invariant. This is clear from looking at the first moment EN(t) = λ t, which is linearly increasing in time.

2.3 Age and excess time
At any time t, the instant of last and next arrivals are SN(t) and SN(t)+1 respectively. Age of a counting
process defined as age from the last arrival, and the excess is defined as remaining time till next arrival,

A(t) = t−SN(t) Y (t) = SN(t)+1− t.

Lemma 2.8. Age and residual processes for a Poisson process are independent and the corresponding
residual process has distribution same as inter-arrival distribution

Proof. We first find the distribution of age A(s) and excess time Y (s) individually. Using stationary
increment property of the counting process N(t), we can write

P{A(s)> x}= ∑
n∈N0

P{N(s)−N(s− x) = 0,N(s) = n}= ∑
n∈N0

P{N(x) = 0,N(s− x) = n}= P0(x),

P{Y (s)> y}= ∑
n∈N0

P{N(s+ y)−N(s) = 0,N(s) = n}= ∑
n∈N0

P{N(y) = 0,N(s) = n}= P0(y).

Since the counting process N(t) has stationary and independent increments, we can write the joint prob-
ability as

P{A(s)> x,Y (s)> y}= ∑
n∈N0

P{N(s+ y)−N(s− x) = 0,N(s) = n}= ∑
n∈N0

P{N(y+ x) = 0,N(s− x) = n}

= P{N(y+ x) = 0}= P{N(y+ x)−N(y) = 0}P{N(y) = 0}= P0(x)P0(y).

Therefore, Y (s) is independent of A(s) and they both have the same exponential distribution as Xn+1. The
memoryless property of exponential distribution is crucially used.
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A Functions with semigroup property
Lemma A.1. A unique non-negative right continuous function f : R→ R satisfying equation

f (t + s) = f (t) f (s), for all t,s ∈ R

is f (t) = eθ t , where θ = log f (1).

Proof. Clearly, we have f (0) = f 2(0). Since f is non-negative, it means f (0) = 1. By definition of θ

and induction for m,n ∈ Z+, we see that

f (m) = f (1)m = eθm, eθ = f (1) = f (1/n)n.

Let q ∈Q, then it can be written as m/n,n 6= 0 for some m,n ∈ Z+. Hence, it is clear that for all q ∈Q+,
we have f (q) = eθq. either unity or zero. Note, that f is a right continuous function and is non-negative.
Now, we can show that f is exponential for any real positive t by taking a sequence of rational numbers
{tn} decreasing to t. From right continuity of f , we obtain

f (t) = lim
tn↓t

f (tn) = lim
tn↓t

eβ tn = eβ t .
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