
Lecture 04: Properties of Poisson Process

1 Characterizations of Poisson process
It is clear that t partitions XN(t)+1 in two parts such that XN(t)+1 = A(t)+Y (t) as seen in Figure ?? for the
case when N(s) = n.
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Figure 1: Stationary and independent increment property of Poisson process.

Proposition 1.1. A Poisson process {N(t), t > 0} is simple counting process with stationary independent
increments.

Proof. It is clear that Poisson process is a simple counting process. To show that N(t) has stationary and
independent increments, it suffices to show that N(t)−N(s) is independent of N(s) and the distribution of
increment N(t)−N(s) is identical to that of N(t−s). This follows from the fact that we can use induction
to show stationary and independent increment property for for any finite disjoint time-intervals.

We can write the distribution of N(t)−N(s) given N(s) in terms of the following events involving
inter-arrival times and excess times as

P{N(t)−N(s)> m|N(s) = n}= P{Y (s)+Sn+m−Sn+1 6 t− s|Sn +A(s) = s}.

Further, we see that independent increment holds only if inter-arrival time is exponential. Since, {Xi : i >
n+2}∪{Y (s)} are independent of {Xi : i 6 n}∪A(s), we have N(t)−N(s) independent of N(s). Further,
since Y (s) has same distribution as Xn+1, we get N(t)−N(s) having same distribution as N(t− s). By
induction, we can extend this result to (N(tn)−N(tn−1), ...,N(s)).
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Theorem 1.2 (Characterization 1). A simple counting process with stationary and independent incre-
ment is a Poisson process with parameter λ when

lim
t↓0

P{N(t) = 1}
t

= λ , lim
t↓0

P{N(t)≥ 2}
t

= 0.

Proof. It suffices to show that first inter-arrival times X1 is exponentially distributed with parameter λ .
Notice that, the probability P0(t) of no arrivals in a time duration [0, t) satisfies the semi-group property.
That is,

P0(t + s) = P{N(t + s)−N(t) = 0,N(t) = 0}= P0(t)P0(s).

Using the conditions in the theorem, the result follows.

Proposition 1.3 (Characterization 2). Let {Ii ⊆ R+ : i ∈ [k]} be a finite collection of disjoint intervals.
A stationary and independent increment simple counting process {N(t), t > 0} with N(0) = 0 is Poisson
process iff

P
k⋂

i=1

{N(Ii) = ni}=
k

∏
i=1

(λ |Ii|)ni

ni!
e−λ |Ii|.

Proof. It is clear that Poisson process satisfies the above conditions. Further, since P{N(t) = 0}= e−λ t ,
it follows that the counting process with stationary and independent increment is Poisson with rate λ .

Proposition 1.4. Let {N(t), t > 0} be a Poisson process with {Ii ⊆ R+ : i ∈ [n]} a set of finite disjoint
intervals with I = ∪i∈[n]Ii, and {ki ∈ N0 : i ∈ [n]} and k = ∑i∈[n] ki. Then, we have

P{N(Ii) = ki, i ∈ [n]|N(I) = k}= k! ∏
i∈[n]

1
ki!

(
|Ii|
|I|

)ki

.

Proof. It follows from the stationary and independent increment property of Poisson processes that

P{N(Ii) = ki, i ∈ [n]|N(I) = k}=
P
⋂

i∈[n]{N(Ii) = ki}
P{N(I) = k}

=
∏i∈[n] P{N(Ii) = ki}

P{N(I) = k}
.

1.1 Conditional distribution of arrivals
Proposition 1.5. For a Poisson process {N(t), t > 0}, distribution of first arrival instant S1 conditioned
on {N(t) = 1} is uniform between [0, t).

Proof. If N(t) = 1, then we know that conditional distribution of S1 is supported on [0, t). By Proposi-
tion ??, we see that

P{S1 ≤ s|N(t) = 1}= P{N(s) = 1,N(t− s) = 0|N(t) = 1}1{s < t}+1{s≥ t}= s
t
1{s < t}+1{s≥ t}.

Proposition 1.6. For a Poisson process {N(t), t > 0}, joint distribution of arrival instant {S1, . . . ,Sn}
conditioned on {N(t) = n} is identical to joint distribution of order statistics of n iid uniformly distributed
random variables between [0, t].
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Proof. Let {si ∈ (0, t) : i ∈ [n]} be a sequence of increasing numbers. If we denote s0 = 0, then we can
write

n⋂
i=1

{Si = si}∩{N(t) = n} ⇐⇒
n⋂

i=1

{Xi = si− si−1}∩{Xn+1 > t− sn}.

Note that all the events on RHS are independent. Hence, it is easy to compute the joint distribution of
{S1, . . . ,Sn} as

P
n⋂

i=1

{Si ≤ si}∩{N(t) = n}=
∫ s1

0
du1 · · ·

∫ sn

0
dun

n

∏
i=1

λ exp(−λ (ui−ui−1)exp(−λ (t−un))

= λ
n exp(−λ t)

n

∏
i=1

si.

Since P{N(t) = n}= exp(−λ t)(λ t)n/n!, it follows that

P{S1 ≤ s1, . . . ,Sn ≤ sn|N(t) = n}=

{
n!∏

n
i=1

si
t s < t

0 s≥ t.

Let U1, . . . ,Un be iid uniform random variables in [0, t]. Then, the order statistics of U1 . . . ,Un has an
identical joint distribution to n arrival instants conditioned on {N(t) = n}.

2 Superposition and decomposition of Poisson processes
Theorem 2.1 (Sum of Independent Poissons). Let {N1(t), t > 0} and {N2(t), t > 0} be two independent
Poisson processes with rats λ1 and λ2 respectively. Then, the process N(t) = N1(t)+N2(t) is Poisson
with rate λ1 +λ2.

Proof. We need to show that {N(t)} has stationary independent increments, and

P{N(t) = n}= exp(−(λ1 +λ2)t)
(λ1 +λ2)

ntn

n!
.

For two disjoint interval (t1, t2) and (t3, t4), we can see that for both processes N1(t) and N2(t), arrivals
in (t1, t2) and (t3, t4) are independent. Therefore, N(t) has independent increment property. Similarly, we
can argue about the stationary increment property of {N(t)}. Further, we can write

{N(t) = n}=
n⋃

k=0

{{N1(t) = k}∩{N2(t) = n− k}}.

Since N1(t) and N2(t) are independent, we can write

P{N(t) = n}=
n

∑
k=0

exp(−λ1t)
(λ1t)k

k!
exp(−λ2t)

(λ2t)n−k

(n− k)!
,

=
exp(−(λ1 +λ2)t)

n!

n

∑
k=0

(
n
k

)
(λ1t)k(λ2t)n−k.

Result follows by recognizing that summand is just binomial expansion of [(λ1 +λ2)t]n.

Remark 2.2. If independence condition is removed, the statement is not true.
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Figure 2: Splitting a Poisson process into two independent Poisson processes.

Theorem 2.3 (Independent Spilitting). Let {N(t), t > 0} be a Poisson arrival process. Each arrival
can be randomly assigned to either arrival type 1 or 2, with probability p and (1− p) respectively,
independent of previous assignments. Arrival processes of type 1 and 2 are denoted by N1(t) and N2(t)
respectively. Then, {N1(t), t > 0},and {N2(t), t > 0} are mutually independent Poisson processes with
rates λ p and λ (1− p) respectively.

Proof. To show that N1(t), t ≥ 0 is a Poisson process with rate λ p, we show that it is stationary indepen-
dent increment process with the distribution

P{N1(t) = n}= (pλ t)n

n!
e−λ pt .

The stationary, independent increment property of the probabilistically filtered processes {N1(t), t > 0}
and {N2(t), t > 0} can be understood and argued out from the example given in the figure. Notice that

{N1(t) = k}=
∞⋃

n=k

{N(t) = n,N1(t) = k}.
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Further notice that conditioned on {N(t) = n}, probability of event {N1(t) = k} is merely probability of
selecting k arrivals out of n, each with independent probability p. Therefore,

P{N1(t) = k}= exp(−λ t)
∞

∑
n=k

(λ t)n

n!

(
n
k

)
pk(1− p)n−k,

= exp(−λ t)
(λ pt)k

k!

∞

∑
n=k

(λ (1− p)t)n−k

(n− k)!
.

Recognizing that infinite sum in RHS adds up exp(λ (1− p)t), the result follows. We can find the dis-
tribution of N2(t) by similar arguments. We will show that events {N1(t) = n1} and {N2(t) = n2} are
independent. To this end, we see that

{N1(t) = n1,N2(t) = n2}= {N(t) = n1 +n2,N1(t) = n1}.

Using their distribution for N1(t),N2(t), and conditional distribution of N1(t) on N(t), we can show that

P{N1(t) = n1,N2(t) = n2}= exp(−λ t)
(λ t)n1+n2

(n1 +n2)!

(
n1 +n2

n1

)
pn1(1− p)n2 ,

= P{N1(t) = n1}P{N2(t) = n2}.

In general, we need to show finite dimensional distributions factorize. That is, we need to show that
for measurable sets A1, . . . ,An : j ∈ [m]}, we have

P

(
n⋂

i=1

{N1(ti) ∈ Ai}
m⋂

j=1

{N2(s j) ∈ B j}

)
= P

(
n⋂

i=1

{N1(ti) ∈ Ai}

)
P

(
m⋂

j=1

{N2(s j) ∈ B j}

)
.

A Order statistics
For any n length sequence a ∈ Rn, the order statistics is a permutation σ : [n]→ [n] such that

aσ(1) ≤ aσ(2) ≤ ·· · ≤ aσ(n).

For, k ∈ [n], we call aσ(k) as the kth order statistic of the sequence a. In particular, first order statistic is
the minimum, and the nth order statistic is the maximum of a n length sequence.

Lemma A.1. Let X = (X1,X2, . . . ,Xn) be an n-length sequence of iid random variables with common
distribution and density functions F and f respectively. Then, the joint density of order statistics of
sequence X for x ∈ Rn is

fX◦σ (x) = n!
n

∏
i=1

f (xi).

Lemma A.2. Let X = (X1,X2, . . . ,Xn) be an n-length sequence of iid random variables with common
distribution and density functions F and f respectively. Then, the density function of kth order statistic of
sequence X for x ∈ R is

fXσ(k)(x) =
(

n
k

)
F(x)k−1F̄(x)n−k f (x).
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