Lecture 04: Properties of Poisson Process

1 Characterizations of Poisson process

It is clear that t partitions $X_{N(t)+1}$ in two parts such that $X_{N(t)+1}=A(t)+Y(t)$ as seen in Figure ?? for the case when $N(s)=n$.

Figure 1: Stationary and independent increment property of Poisson process.

Proposition 1.1. A Poisson process $\{N(t), t \geqslant 0\}$ is simple counting process with stationary independent increments.

Proof. It is clear that Poisson process is a simple counting process. To show that $N(t)$ has stationary and independent increments, it suffices to show that $N(t)-N(s)$ is independent of $N(s)$ and the distribution of increment $N(t)-N(s)$ is identical to that of $N(t-s)$. This follows from the fact that we can use induction to show stationary and independent increment property for for any finite disjoint time-intervals.

We can write the distribution of $N(t)-N(s)$ given $N(s)$ in terms of the following events involving inter-arrival times and excess times as

$$
P\{N(t)-N(s) \geqslant m \mid N(s)=n\}=P\left\{Y(s)+S_{n+m}-S_{n+1} \leqslant t-s \mid S_{n}+A(s)=s\right\} .
$$

Further, we see that independent increment holds only if inter-arrival time is exponential. Since, $\left\{X_{i}: i \geqslant\right.$ $n+2\} \cup\{Y(s)\}$ are independent of $\left\{X_{i}: i \leqslant n\right\} \cup A(s)$, we have $N(t)-N(s)$ independent of $N(s)$. Further, since $Y(s)$ has same distribution as X_{n+1}, we get $N(t)-N(s)$ having same distribution as $N(t-s)$. By induction, we can extend this result to $\left(N\left(t_{n}\right)-N\left(t_{n-1}\right), \ldots, N(s)\right)$.

Theorem 1.2 (Characterization 1). A simple counting process with stationary and independent increment is a Poisson process with parameter λ when

$$
\lim _{t \downarrow 0} \frac{P\{N(t)=1\}}{t}=\lambda, \quad \quad \lim _{t \downarrow 0} \frac{P\{N(t) \geq 2\}}{t}=0 .
$$

Proof. It suffices to show that first inter-arrival times X_{1} is exponentially distributed with parameter λ. Notice that, the probability $P_{0}(t)$ of no arrivals in a time duration $[0, t)$ satisfies the semi-group property. That is,

$$
P_{0}(t+s)=P\{N(t+s)-N(t)=0, N(t)=0\}=P_{0}(t) P_{0}(s)
$$

Using the conditions in the theorem, the result follows.
Proposition 1.3 (Characterization 2). Let $\left\{I_{i} \subseteq \mathbb{R}_{+}: i \in[k]\right\}$ be a finite collection of disjoint intervals. A stationary and independent increment simple counting process $\{N(t), t \geqslant 0\}$ with $N(0)=0$ is Poisson process iff

$$
P \bigcap_{i=1}^{k}\left\{N\left(I_{i}\right)=n_{i}\right\}=\prod_{i=1}^{k} \frac{\left(\lambda\left|I_{i}\right|\right)^{n_{i}}}{n_{i}!} e^{-\lambda\left|I_{i}\right|} .
$$

Proof. It is clear that Poisson process satisfies the above conditions. Further, since $P\{N(t)=0\}=e^{-\lambda t}$, it follows that the counting process with stationary and independent increment is Poisson with rate λ.

Proposition 1.4. Let $\{N(t), t \geqslant 0\}$ be a Poisson process with $\left\{I_{i} \subseteq \mathbb{R}_{+}: i \in[n]\right\}$ a set of finite disjoint intervals with $I=\cup_{i \in[n]} I_{i}$, and $\left\{k_{i} \in \mathbb{N}_{0}: i \in[n]\right\}$ and $k=\sum_{i \in[n]} k_{i}$. Then, we have

$$
P\left\{N\left(I_{i}\right)=k_{i}, i \in[n] \mid N(I)=k\right\}=k!\prod_{i \in[n]} \frac{1}{k_{i}!}\left(\frac{\left|I_{i}\right|}{|I|}\right)^{k_{i}}
$$

Proof. It follows from the stationary and independent increment property of Poisson processes that

$$
P\left\{N\left(I_{i}\right)=k_{i}, i \in[n] \mid N(I)=k\right\}=\frac{P \bigcap_{i \in[n]}\left\{N\left(I_{i}\right)=k_{i}\right\}}{P\{N(I)=k\}}=\frac{\prod_{i \in[n]} P\left\{N\left(I_{i}\right)=k_{i}\right\}}{P\{N(I)=k\}} .
$$

1.1 Conditional distribution of arrivals

Proposition 1.5. For a Poisson process $\{N(t), t \geqslant 0\}$, distribution of first arrival instant S_{1} conditioned on $\{N(t)=1\}$ is uniform between $[0, t)$.

Proof. If $N(t)=1$, then we know that conditional distribution of S_{1} is supported on $[0, t)$. By Proposition ??, we see that
$P\left\{S_{1} \leq s \mid N(t)=1\right\}=P\{N(s)=1, N(t-s)=0 \mid N(t)=1\} 1\{s<t\}+1\{s \geq t\}=\frac{s}{t} 1\{s<t\}+1\{s \geq t\}$.

Proposition 1.6. For a Poisson process $\{N(t), t \geqslant 0\}$, joint distribution of arrival instant $\left\{S_{1}, \ldots, S_{n}\right\}$ conditioned on $\{N(t)=n\}$ is identical to joint distribution of order statistics of n iid uniformly distributed random variables between $[0, t]$.

Proof. Let $\left\{s_{i} \in(0, t): i \in[n]\right\}$ be a sequence of increasing numbers. If we denote $s_{0}=0$, then we can write

$$
\bigcap_{i=1}^{n}\left\{S_{i}=s_{i}\right\} \cap\{N(t)=n\} \Longleftrightarrow \bigcap_{i=1}^{n}\left\{X_{i}=s_{i}-s_{i-1}\right\} \cap\left\{X_{n+1}>t-s_{n}\right\}
$$

Note that all the events on RHS are independent. Hence, it is easy to compute the joint distribution of $\left\{S_{1}, \ldots, S_{n}\right\}$ as

$$
\begin{aligned}
P \bigcap_{i=1}^{n}\left\{S_{i} \leq s_{i}\right\} \cap\{N(t)=n\} & =\int_{0}^{s_{1}} d u_{1} \cdots \int_{0}^{s_{n}} d u_{n} \prod_{i=1}^{n} \lambda \exp \left(-\lambda\left(u_{i}-u_{i-1}\right) \exp \left(-\lambda\left(t-u_{n}\right)\right)\right. \\
& =\lambda^{n} \exp (-\lambda t) \prod_{i=1}^{n} s_{i} .
\end{aligned}
$$

Since $P\{N(t)=n\}=\exp (-\lambda t)(\lambda t)^{n} / n!$, it follows that

$$
P\left\{S_{1} \leq s_{1}, \ldots, S_{n} \leq s_{n} \mid N(t)=n\right\}= \begin{cases}n!\prod_{i=1}^{n} \frac{s_{i}}{t} & s<t \\ 0 & s \geq t\end{cases}
$$

Let U_{1}, \ldots, U_{n} be iid uniform random variables in $[0, t]$. Then, the order statistics of $U_{1} \ldots, U_{n}$ has an identical joint distribution to n arrival instants conditioned on $\{N(t)=n\}$.

2 Superposition and decomposition of Poisson processes

Theorem 2.1 (Sum of Independent Poissons). Let $\left\{N_{1}(t), t \geqslant 0\right\}$ and $\left\{N_{2}(t), t \geqslant 0\right\}$ be two independent Poisson processes with rats λ_{1} and λ_{2} respectively. Then, the process $N(t)=N_{1}(t)+N_{2}(t)$ is Poisson with rate $\lambda_{1}+\lambda_{2}$.

Proof. We need to show that $\{N(t)\}$ has stationary independent increments, and

$$
P\{N(t)=n\}=\exp \left(-\left(\lambda_{1}+\lambda_{2}\right) t\right) \frac{\left(\lambda_{1}+\lambda_{2}\right)^{n} t^{n}}{n!}
$$

For two disjoint interval $\left(t_{1}, t_{2}\right)$ and $\left(t_{3}, t_{4}\right)$, we can see that for both processes $N_{1}(t)$ and $N_{2}(t)$, arrivals in $\left(t_{1}, t_{2}\right)$ and $\left(t_{3}, t_{4}\right)$ are independent. Therefore, $N(t)$ has independent increment property. Similarly, we can argue about the stationary increment property of $\{N(t)\}$. Further, we can write

$$
\{N(t)=n\}=\bigcup_{k=0}^{n}\left\{\left\{N_{1}(t)=k\right\} \cap\left\{N_{2}(t)=n-k\right\}\right\}
$$

Since $N_{1}(t)$ and $N_{2}(t)$ are independent, we can write

$$
\begin{aligned}
P\{N(t)=n\} & =\sum_{k=0}^{n} \exp \left(-\lambda_{1} t\right) \frac{\left(\lambda_{1} t\right)^{k}}{k!} \exp \left(-\lambda_{2} t\right) \frac{\left(\lambda_{2} t\right)^{n-k}}{(n-k)!} \\
& =\frac{\exp \left(-\left(\lambda_{1}+\lambda_{2}\right) t\right)}{n!} \sum_{k=0}^{n}\binom{n}{k}\left(\lambda_{1} t\right)^{k}\left(\lambda_{2} t\right)^{n-k}
\end{aligned}
$$

Result follows by recognizing that summand is just binomial expansion of $\left[\left(\lambda_{1}+\lambda_{2}\right) t\right]^{n}$.
Remark 2.2. If independence condition is removed, the statement is not true.

Figure 2: Splitting a Poisson process into two independent Poisson processes.

Theorem 2.3 (Independent Spilitting). Let $\{N(t), t \geqslant 0\}$ be a Poisson arrival process. Each arrival can be randomly assigned to either arrival type 1 or 2 , with probability p and $(1-p)$ respectively, independent of previous assignments. Arrival processes of type 1 and 2 are denoted by $N_{1}(t)$ and $N_{2}(t)$ respectively. Then, $\left\{N_{1}(t), t \geqslant 0\right\}$, and $\left\{N_{2}(t), t \geqslant 0\right\}$ are mutually independent Poisson processes with rates λp and $\lambda(1-p)$ respectively.

Proof. To show that $N_{1}(t), t \geq 0$ is a Poisson process with rate λp, we show that it is stationary independent increment process with the distribution

$$
P\left\{N_{1}(t)=n\right\}=\frac{(p \lambda t)^{n}}{n!} e^{-\lambda p t}
$$

The stationary, independent increment property of the probabilistically filtered processes $\left\{N_{1}(t), t \geqslant 0\right\}$ and $\left\{N_{2}(t), t \geqslant 0\right\}$ can be understood and argued out from the example given in the figure. Notice that

$$
\left\{N_{1}(t)=k\right\}=\bigcup_{n=k}^{\infty}\left\{N(t)=n, N_{1}(t)=k\right\} .
$$

Further notice that conditioned on $\{N(t)=n\}$, probability of event $\left\{N_{1}(t)=k\right\}$ is merely probability of selecting k arrivals out of n, each with independent probability p. Therefore,

$$
\begin{aligned}
P\left\{N_{1}(t)=k\right\} & =\exp (-\lambda t) \sum_{n=k}^{\infty} \frac{(\lambda t)^{n}}{n!}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\exp (-\lambda t) \frac{(\lambda p t)^{k}}{k!} \sum_{n=k}^{\infty} \frac{(\lambda(1-p) t)^{n-k}}{(n-k)!}
\end{aligned}
$$

Recognizing that infinite sum in RHS adds up $\exp (\lambda(1-p) t)$, the result follows. We can find the distribution of $N_{2}(t)$ by similar arguments. We will show that events $\left\{N_{1}(t)=n_{1}\right\}$ and $\left\{N_{2}(t)=n_{2}\right\}$ are independent. To this end, we see that

$$
\left\{N_{1}(t)=n_{1}, N_{2}(t)=n_{2}\right\}=\left\{N(t)=n_{1}+n_{2}, N_{1}(t)=n_{1}\right\} .
$$

Using their distribution for $N_{1}(t), N_{2}(t)$, and conditional distribution of $N_{1}(t)$ on $N(t)$, we can show that

$$
\begin{aligned}
P\left\{N_{1}(t)=n_{1}, N_{2}(t)=n_{2}\right\} & =\exp (-\lambda t) \frac{(\lambda t)^{n_{1}+n_{2}}}{\left(n_{1}+n_{2}\right)!}\binom{n_{1}+n_{2}}{n_{1}} p^{n_{1}}(1-p)^{n_{2}} \\
& =P\left\{N_{1}(t)=n_{1}\right\} P\left\{N_{2}(t)=n_{2}\right\}
\end{aligned}
$$

In general, we need to show finite dimensional distributions factorize. That is, we need to show that for measurable sets $\left.A_{1}, \ldots, A_{n}: j \in[m]\right\}$, we have

$$
P\left(\bigcap_{i=1}^{n}\left\{N_{1}\left(t_{i}\right) \in A_{i}\right\} \bigcap_{j=1}^{m}\left\{N_{2}\left(s_{j}\right) \in B_{j}\right\}\right)=P\left(\bigcap_{i=1}^{n}\left\{N_{1}\left(t_{i}\right) \in A_{i}\right\}\right) P\left(\bigcap_{j=1}^{m}\left\{N_{2}\left(s_{j}\right) \in B_{j}\right\}\right) .
$$

A Order statistics

For any n length sequence $a \in \mathbb{R}^{n}$, the order statistics is a permutation $\sigma:[n] \rightarrow[n]$ such that

$$
a_{\sigma(1)} \leq a_{\sigma(2)} \leq \cdots \leq a_{\sigma(n)}
$$

For, $k \in[n]$, we call $a_{\sigma(k)}$ as the k th order statistic of the sequence a. In particular, first order statistic is the minimum, and the nth order statistic is the maximum of a n length sequence.

Lemma A.1. Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be an n-length sequence of iid random variables with common distribution and density functions F and f respectively. Then, the joint density of order statistics of sequence X for $x \in \mathbb{R}^{n}$ is

$$
f_{X \circ \sigma}(x)=n!\prod_{i=1}^{n} f\left(x_{i}\right) .
$$

Lemma A.2. Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be an n-length sequence of iid random variables with common distribution and density functions F and f respectively. Then, the density function of kth order statistic of sequence X for $x \in \mathbb{R}$ is

$$
f_{X_{\sigma(k)}}(x)=\binom{n}{k} F(x)^{k-1} \bar{F}(x)^{n-k} f(x) .
$$

