Lecture 04: Properties of Poisson Process

1 Characterizations of Poisson process

Itis clear that 7 partitions Xy(,), in two parts such that Xy, =A() + Y () as seen in Figure ?? for the
case when N(s) = n.
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Figure 1: Stationary and independent increment property of Poisson process.

Proposition 1.1. A Poisson process {N(t),t > 0} is simple counting process with stationary independent
increments.

Proof. Tt is clear that Poisson process is a simple counting process. To show that N(#) has stationary and
independent increments, it suffices to show that N(¢) — N(s) is independent of N(s) and the distribution of
increment N(¢) — N(s) is identical to that of N(¢ —s). This follows from the fact that we can use induction
to show stationary and independent increment property for for any finite disjoint time-intervals.

We can write the distribution of N(r) — N(s) given N(s) in terms of the following events involving
inter-arrival times and excess times as

P{N(t) =N(s) 2 m|N(s) =n} = P{Y(s) + Sntm — Snt1 <t —5|Sy +A(s) = s}.

Further, we see that independent increment holds only if inter-arrival time is exponential. Since, {X; :i >
n+2}U{Y (s)} are independent of {X; : i <n}UA(s), we have N(¢) — N(s) independent of N(s). Further,
since Y (s) has same distribution as X,,;1, we get N(¢) — N(s) having same distribution as N(¢ —s). By
induction, we can extend this result to (N(#,) — N(tp—1),...,N(s)). O



Theorem 1.2 (Characterization 1). A simple counting process with stationary and independent incre-
ment is a Poisson process with parameter A when
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Proof. Tt suffices to show that first inter-arrival times X; is exponentially distributed with parameter A.
Notice that, the probability Py(¢) of no arrivals in a time duration [0,7) satisfies the semi-group property.
That is,

Py(t+s) =P{N({t+s)—N(t) =0,N(t) =0} = Ro(t)Po(s).
Using the conditions in the theorem, the result follows. O

Proposition 1.3 (Characterization 2). Let {I; C R :i € [k]} be a finite collection of disjoint intervals.
A stationary and independent increment simple counting process {N(t), t > 0} with N(0) = 0 is Poisson
process iff

Pfk]{N(L') =n} = ﬁwewm.

i=1 =1 il
Proof. 1t is clear that Poisson process satisfies the above conditions. Further, since P{N(¢) =0} = e M,
it follows that the counting process with stationary and independent increment is Poisson withrate A. [
Proposition 1.4. Let {N(t),t > 0} be a Poisson process with {I; C Ry :i € [n]} a set of finite disjoint
intervals with I = Uic| i, and {k; € No :i € [n]} and k = Y;c|, ki. Then, we have

PAN(L) = ki,i € [n][N(I) = k} = "'Hk'(||11||)

Proof. 1t follows from the stationary and independent increment property of Poisson processes that

Picpy{N(i) = kit Tlicin PAN(L;) = ki}
P{N(I)=k}  P{N(I)=k}

P{N(I;) = ki,i € [n]|N(I) =k} =

1.1 Conditional distribution of arrivals

Proposition 1.5. For a Poisson process {N(t),t > 0}, distribution of first arrival instant Sy conditioned
on {N(t) = 1} is uniform between [0,1).

Proof. Tf N(t) = 1, then we know that conditional distribution of S; is supported on [0,7). By Proposi-
tion ??, we see that

P{S) <sIN(t) =1} = P{N(s) = 1,N(t —s) = O|N(r) = 1}1{s <1} + 1{s > 1} = ;l{s <t +1{s>1).

O

Proposition 1.6. For a Poisson process {N(t),t > 0}, joint distribution of arrival instant {Si,...,S,}
conditioned on {N(t) = n} is identical to joint distribution of order statistics of n iid uniformly distributed
random variables between |0,1].



Proof. Let {s; € (0,¢) : i € [n]} be a sequence of increasing numbers. If we denote so = 0, then we can
write

m{Si:Si}ﬂ{N(Z‘) :n} < ﬂ{X,’ZS,‘*S,;]}m{XnJr] >I7Sn}.
i=1 i=1

Note that all the events on RHS are independent. Hence, it is easy to compute the joint distribution of
{S1,...,5,} as
n S1 Sn n
PO{Si < s:} N {N(t) =n} = /O du /O duty [ Ao exp(— A (i — 1) exp(—A( — )
i=1 i=1
n
= A"exp(—At) Hsl-.
i=1

Since P{N(t) = n} = exp(—At)(At)" /n!, it follows that

NIt s<t
PLSI <s1yeenySp < suN(1) = n} = {” M s

0 s>t
Let Uy,...,U, be iid uniform random variables in [0,¢]. Then, the order statistics of Uj...,U, has an
identical joint distribution to n arrival instants conditioned on {N(¢) = n}. O

2 Superposition and decomposition of Poisson processes

Theorem 2.1 (Sum of Independent Poissons). Let {N|(t),t > 0} and {N(t),t > 0} be two independent
Poisson processes with rats A1 and Ay respectively. Then, the process N(t) = Ny(t) + Na(t) is Poisson
with rate A; + A5.

Proof. We need to show that {N(¢)} has stationary independent increments, and

A+ A)"t"
PING) = n} = exp(—(ia + 2y 2T
For two disjoint interval (¢1,#,) and (#3,%4), we can see that for both processes N; () and N, (), arrivals

in (#1,;) and (t3,14) are independent. Therefore, N(¢) has independent increment property. Similarly, we
can argue about the stationary increment property of {N(¢)}. Further, we can write

) =n) = TN 0) = k) A (Nale) =n— k).
k=0

Since Nj(¢) and N,(¢) are independent, we can write

B B n B (l]l)k B (lgt)"fk
P{N(t)=n}= k;)exp( Ait) a exp(—Aat) TR
exp(— (M +A)t) & [n e
- Rz +A)) (nl! 2 Y <k) (M) (Aat)" .
k=0
Result follows by recognizing that summand is just binomial expansion of [(A; + A,)¢]". O

Remark 2.2. If independence condition is removed, the statement is not true.
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Figure 2: Splitting a Poisson process into two independent Poisson processes.

Theorem 2.3 (Independent Spilitting). Ler {N(z),t > 0} be a Poisson arrival process. Each arrival
can be randomly assigned to either arrival type 1 or 2, with probability p and (1 — p) respectively,
independent of previous assignments. Arrival processes of type 1 and 2 are denoted by N (t) and N>(t)
respectively. Then, {N;(t),t > 0},and {Nz(t),t > 0} are mutually independent Poisson processes with
rates Ap and A(1 — p) respectively.

Proof. To show that N;(¢),t > 0 is a Poisson process with rate A p, we show that it is stationary indepen-
dent increment process with the distribution

(p;{'t)n —)Lpt'

P{N,(t) =n} = ¢

The stationary, independent increment property of the probabilistically filtered processes {N;(t),z > 0}
and {N,(z),t > 0} can be understood and argued out from the example given in the figure. Notice that

{Ni(r) =k} = D{N(t) =n,N;(r) = k}.

n=k



Further notice that conditioned on {N(¢) = n}, probability of event {N;(¢) = k} is merely probability of
selecting k arrivals out of n, each with independent probability p. Therefore,

P = k) =exp(-20) T S (1) 1

explan )t 5 U= p

K= (k)

Recognizing that infinite sum in RHS adds up exp(A (1 — p)t), the result follows. We can find the dis-
tribution of N,(¢) by similar arguments. We will show that events {N;(¢) = n;} and {N,(¢) = ny} are
independent. To this end, we see that

{Nl(l‘) an,Nz(t) = nz} = {N(l) =m -|—I’l2,N1(l‘) an}.

Using their distribution for N (¢),Nx(t), and conditional distribution of N;(¢) on N(z), we can show that

PINI(1) = ni, Na(t) = 2} = exp<—m>m (”1’:"2>pn. (1—p),

=P{Ni(t) = m }P{N2(t) = m2}.

In general, we need to show finite dimensional distributions factorize. That is, we need to show that
for measurable sets Ay, ...,A, : j € [m]}, we have

P (ﬁ{N](li) EA,'} ﬁ{NZ(Sj) € Bj}> =P (ﬁ{Nl(l,’) 6A,’}> P (ﬁ{Nz(Sj) S B]}> .
i=1 i=1

J=1 J=1

A Order statistics

For any n length sequence a € R”, the order statistics is a permutation o : [n] — [n] such that
do(1) < Ag(2) < *** S do(n)-

For, k € [n], we call ag(x) as the kth order statistic of the sequence a. In particular, first order statistic is
the minimum, and the nth order statistic is the maximum of a n length sequence.

Lemma A.1. Let X = (X1,Xo,...,X,) be an n-length sequence of iid random variables with common
distribution and density functions F and f respectively. Then, the joint density of order statistics of
sequence X for x € R" is

Sxoo(x) =n! ﬁf(xi).

Lemma A.2. Let X = (X1,Xa,...,X,) be an n-length sequence of iid random variables with common
distribution and density functions F and f respectively. Then, the density function of kth order statistic of
sequence X forx € R is

n _

chy(k) ()C) = (k)F(x)k_lF(x)n_kf(x).



