
Lecture 05: Compound and Non-Stationary Poisson
Processes

1 Compound Poisson process
A compound Poisson process is a real-valued point process {Zt , t ≥ 0} having the following properties.

1. finite jumps: for all ω ∈Ω, t 7−→ Zt(ω) has finitely many jumps in finite intervals.

2. independent increments: for all t,s≥ 0;Zt+s−Zt is independent of past {Zu,u≤ t}.

3. stationary increments: for all t,s≥ 0, distribution of Zt+s−Zt depends only on s and not on t.

For each ω ∈Ω, we can define time and size of nth jump

S0(ω) = 0 Sn(ω) = inf{t > 0 : Zt(ω)> ZSn−1(ω)}, n ∈ N,
X0(ω) = 0 Xn(ω) = Zn(ω)−Zn−1(ω).

Let Nt , t > 0 be the counting process associated with the number of jumps in [0, t). Then, Sn are the arrival
instants of nth jumps.

Proposition 1.1. A stochastic process {Zt , t > 0} is a compound Poisson process iff its jump times form
a Poisson process and the jump sizes form an iid random sequence independent of the jump times.

Proof. From independent increment property of compound Poisson processes, it follows that Zt+s−Zt =
0 is independent of the past Zu,u 6 t. Further, it follows from the stationary increment property that the
distribution of Zt+s− Zt = 0 is independent of t. It follows that Nt is a Poisson process. Similarly, it
follows that X1,X2, . . . are iid random variables, independent of S1,S2, . . . .

Conversely, let Zt = ∑
Nt
i=1 Xi where Nt is a Poisson process independent of the random iid sequence

X1,X2, . . . . It is easy to check that Zt has finitely many jumps in finite intervals. Further, one can show
independent and stationary increment properties.

• Arrival of customers in a store is a Poison process Nt . Each customer i spends an iid amount
Xi independent of the arrival process. Amount of money spent Yn by first n customers is

Y0 = 0, Yn =
n

∑
i=1

Xi, i ∈ [n].

Now define Zt = YNt as the amount spent by the customers arriving in time t. Then {Zt , t ≥ 0}
is a compound Poisson Process.

• Let the time between successive failures of a machine be independent and exponentially dis-
tributed. The cost of repair is iid random at each failure. Then the total cost of repair in a
certain time t is a compound Poisson Process.
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2 Non-stationary Poisson process
From the characterization of Poisson process just stated, we can generalize to non-homogeneous Poisson
Process. In this case, the rate of Poisson Process λ is time varying.

An integer valued counting process {N(t), t > 0} is said to be possibly non-stationary Poisson
process if it has unit jumps and independent increments. That is,

1. for each ω ∈Ω, the map t 7→ Nt(ω) has jumps of unit size only,

2. for any t,s≥ 0, the random variable Nt+s−Nt is independent of the past {Nu,u 6 t}.

Let m(t) = ENt for all t > 0. From non-decreasing property of counting processes, it follows that
the mean is also non-decreasing in time t. From right continuity of counting process and the monotone
convergence theorem, it follows that mean function is also right continuous. The time inverse of mean is
defined as

τ(t) = inf{s > 0 : m(s)> t}, t > 0.

Since, inverse of a non-decreasing function is also non-decreasing, we conclude that τ(t) is non-decreasing
function of time t.

Theorem 2.1. Let Nt be a non-stationary Poisson process, such that m(t) = ENt is continuous. Then,

Mt(ω), Nτ(t)(ω), t > 0,ω ∈Ω,

is a stationary Poisson process with unit rate.

Proof. Fix t > s≥ 0 and let s′ , τ(s) and t ′ , τ(t)−τ(s). Then, by definition of Mt , t ′,s′ and independent
increment property of non-stationary Poisson process Nt , we have

E[Mt −Ms|Mu;u 6 s] = E[Nt ′ −Ns′ |Nu;u 6 s′] = m(t ′)−m(s′) = m(τ(t))−m(τ(s)) = t− s.

It follows that Mt is a simple counting process with independent and stationary increments and unit
rate.

Corollary 2.2. Let m(t) be a continuous non-decreasing function. Then, S1,S2, . . . are the arrival instants
in a non-stationary Poisson process Nt with mean function m(t)=ENt iff m(S1),m(S2), . . . are the arrivals
instants of a stationary Poisson process of unit rate.

Proof. We can write the nth arrival instant S′n of unit-rate stationary Poisson process Mt , in terms of the
nth arrival instant Sn of non-stationary Poisson process Nt as

S′n = inf{t > 0 : τ(t)> Sn}= inf{t > 0 : m(Sn)> t}= m(Sn).

This corollary implies that Sn ∈ [s, t) if and only if m(Sn)∈ [m(s),m(t)). Therefore, number of arrivals
in [s, t) equals number of arrivals for unit-rate stationary Poisson process in [m(s),m(t)). Hence, we
conclude that for b(s, t) = m(t)−m(s)

Pr{Nt −Ns = k}= e−b(s,t) b(s, t)k

k!
, k ∈ N0.

We will see that the inter-arrival times for the non-stationary Poisson process Nt , defined as

T0 = 0, Tn = Sn−Sn−1, n ∈ N,

are not independent anymore.
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Proposition 2.3. For a non-stationary Poisson process with continuous mean function m(t), we have

Pr{Tn+1 > t|S1,S2, . . . ,Sn}= exp(−m(Sn + t)+m(Sn)) .

Proof. We define events A = {m(Sn+1) > m(Sn + t)} and B = {m(Sn+1) ≥ m(Sn + t)}. Then, we have
A⊆ {Tn+1 > t} ⊆ B. Hence, we can write

Pr{A|S1,S2, . . . ,Sn} ≤ Pr{Tn+1 > t|S1,S2, . . . ,Sn}.

The arrival instants S1, . . . ,Sn determine m(S1), . . . ,m(Sn),m(Sn + t). Further, since m(Sn+1)−m(Sn) is
the inter-arrival time of the stationary Poisson process M(t), it is independent of S1,S2, . . . ,Sn

Pr{A|S1, . . . ,Sn}= Pr{m(Sn+1)−m(Sn)> m(Sn + t)−m(Sn)|S1, . . . ,Sn}= exp(−m(Sn + t)+m(Sn)) .

Result follows from the continuity of the exponential distribution.

A Laplace functional
The Laplace functional L of a point process Φ and associated counting process N is defined for all
non-negative function f : Rd → R as

LΦ( f ) = Eexp
(
−
∫
Rd

f (x)dN(x)
)
.

For simple function f (x) = ∑
k
i=1 ti1{x ∈ Ai}, we can write the Laplace functional

LΦ( f ) = Eexp(−∑
i

tiN(Ai)),

as a function of the vector (t1, t2, . . . , tk), a joint Laplace transform of the random vector (N(A1), . . . ,N(Ak)).
This way, one can compute all finite dimensional distribution of the counting process N.

Proposition A.1. The Laplace functional of the Poisson process with intensity measure Λ is

LΦ( f ) = exp
(
−
∫
Rd
(1− e− f (x))Λ(dx)

)
.

Proof. For a bounded Borel measurable set A⊆ Rd , consider g(x) = f (x)1{x ∈ A}. Then,

LΦ(g) = Eexp(−
∫
Rd

g(x)dN(x)) = Eexp(−
∫

A
f (x)dN(x)).

Clearly dN(x) = δx1{x ∈Φ} and hence we can write

LΦ(g) = Eexp

(
− ∑

Si∈Φ∩A

∫
A

f (Si)

)
.

We know that the probability of N(A) = |Φ(A)|= n points in set A is given by

P{N(A) = n}= e−Λ(A) Λ(A)n

n!
.
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Given there are n points in set A, the density of n point locations are independent and given by

fS1,...,Sn(x1, . . . ,xn) =

(
Λ(dx)
Λ(A)

)n

, x1, . . . ,xn ∈ A.

Hence, we can write the Laplace functional as

LΦ(g) = e−Λ(A)
∑

n∈N0

Λ(A)n

n!

n

∏
i=1

∫
A

e− f (xi)
Λ(dxi)

Λ(A)
= exp

(
−
∫
Rd
(1− e−g(x))Λ(dx)

)
.

Result follows from taking increasing sequences of sets Ak ↑Rd and monotone convergence theorem.

A.1 Superposition of point processes
Theorem A.2. The superposition of independent Poisson point processes with intensities Λk is a Poisson
point process with intensity measure ∑k Λk if and only if the latter is a locally finite measure.

A.2 Thinning of point processes
Consider a probability retention function p : Rd → [0,1] and a point process Φ. The thinning of point
process Φ = {Sn ∈ Rd : n ∈ N} with the retention function p is a point process such that

Φ
p = {Sn ∈Φ : Y (Sn) = 1},

where Y (Sn) is an independent indicator stochastic process at each point Sn and EY (Sn) = p(Sn).

Theorem A.3. The thinning of the Poisson point process of intensity measure Λ with the retention prob-
ability function p yields a Poisson point process of intensity measure pΛ with

(pΛ)(A) =
∫

A
p(x)Λ(dx)

for all bounded Borel measurable A⊆ Rd .

Proof. Let A ⊆ Rd be a bounded Boreal measurable set, and let f : Rd → R be a non-negative function.
Consider the Laplace functional of the thinned point process Φp for a non-negative function g(x) =
f (x)1{x ∈ A}

LΦp(g) = e−Λ(A)
∑

n∈N0

1
n!

(∫
A
(p(x)e− f (x)+(1− p(x))Λ(dx)

)n

= exp
(
−
∫
Rd
(1− e−g(x))p(x)Λ(dx)

)
.

Result follows from taking increasing sequences of sets Ak ↑Rd and monotone convergence theorem.

4


	Compound Poisson Process
	Non-stationary Poisson Process
	Laplace Functional
	Superposition of point processes
	Thinning of point processes


