Lecture 05: Compound and Non-Stationary Poisson
Processes

1 Compound Poisson process

A compound Poisson process is a real-valued point process {Z;,# > 0} having the following properties.

1. finite jumps: for all ® € Q,f — Z;(®) has finitely many jumps in finite intervals.
2. independent increments: for all z,s > 0;Z;;; — Z; is independent of past {Z,,u < t}.

3. stationary increments: for all #,s > 0, distribution of Z;,; — Z; depends only on s and not on ¢.
For each @ € Q, we can define time and size of nth jump
So(w)=0 Sp(w) =inf{t > 0:Z(w) > Zs, (w)}, n€N,
Xo(w)=0 X, (0)=Z,(0)—Z,-1(®).

Let N,,¢ > 0 be the counting process associated with the number of jumps in [0,7). Then, S, are the arrival
instants of nth jumps.

Proposition 1.1. A stochastic process {Z;,t > 0} is a compound Poisson process iff its jump times form
a Poisson process and the jump sizes form an iid random sequence independent of the jump times.

Proof. From independent increment property of compound Poisson processes, it follows that Z, ; — Z; =
0 is independent of the past Z,, u < ¢. Further, it follows from the stationary increment property that the
distribution of Z;; —Z; = 0 is independent of 7. It follows that N, is a Poisson process. Similarly, it
follows that X1,X5, ... are iid random variables, independent of S1,5>,....

Conversely, let Z, = Zﬁ\':’ 1 X; where N, is a Poisson process independent of the random iid sequence
X1,Xa,.... Itis easy to check that Z; has finitely many jumps in finite intervals. Further, one can show
independent and stationary increment properties. O

e Arrival of customers in a store is a Poison process N;. Each customer i spends an iid amount
X; independent of the arrival process. Amount of money spent Y,, by first n customers is

n
Yy =0, Y, =Y Xiié€|n].
i=1
Now define Z; = Yy, as the amount spent by the customers arriving in time z. Then {Z;,7 > 0}

is a compound Poisson Process.

e Let the time between successive failures of a machine be independent and exponentially dis-
tributed. The cost of repair is iid random at each failure. Then the total cost of repair in a
certain time ¢ is a compound Poisson Process.



2 Non-stationary Poisson process

From the characterization of Poisson process just stated, we can generalize to non-homogeneous Poisson
Process. In this case, the rate of Poisson Process A is time varying.

An integer valued counting process {N(¢), ¢+ > 0} is said to be possibly non-stationary Poisson
process if it has unit jumps and independent increments. That is,

1. for each @ € Q, the map ¢ — N;(®) has jumps of unit size only,
2. for any ¢,s > 0, the random variable N, ; — N; is independent of the past {N,,u <t}.

Let m(t) = EN, for all + > 0. From non-decreasing property of counting processes, it follows that
the mean is also non-decreasing in time ¢#. From right continuity of counting process and the monotone
convergence theorem, it follows that mean function is also right continuous. The time inverse of mean is
defined as

7(t) =inf{s > 0:m(s) >}, t > 0.

Since, inverse of a non-decreasing function is also non-decreasing, we conclude that 7(¢) is non-decreasing
function of time 7.

Theorem 2.1. Let N, be a non-stationary Poisson process, such that m(t) = EN; is continuous. Then,
A
M,(CL)) = NT(,)((D), t>0,0€Q,
is a stationary Poisson process with unit rate.

Proof. Fixt >s>0andlets' £ 7(s) and ¢ = 7(t) — 7(s). Then, by definition of M,,# s’ and independent
increment property of non-stationary Poisson process N;, we have

E[M, — Ms|M,;;u < 5] =E[Ny — Ng|Ny;u < 5’| =m(t') —m(s') = m(z(t)) —m(z(s)) =1 —s.

It follows that M, is a simple counting process with independent and stationary increments and unit
rate. O

Corollary 2.2. Let m(t) be a continuous non-decreasing function. Then, S1,Sa,... are the arrival instants
in a non-stationary Poisson process N; with mean function m(t) =EN; iff m(S1),m(S>), ... are the arrivals
instants of a stationary Poisson process of unit rate.

Proof. We can write the nth arrival instant S, of unit-rate stationary Poisson process M;, in terms of the
nth arrival instant S,, of non-stationary Poisson process N; as

S, =inf{t >0:1(t) > S,} =inf{t > 0:m(S,) >t} =m(S,).
O

This corollary implies that S, € [s,#) if and only if m(S,) € [m(s),m(t)). Therefore, number of arrivals
in [s,#) equals number of arrivals for unit-rate stationary Poisson process in [m(s),m(t)). Hence, we
conclude that for b(s,t) = m(t) — m(s)

_ b(s, 1)k
Pr{N,— N, =k} =e ”W)%, k € No.

We will see that the inter-arrival times for the non-stationary Poisson process &V;, defined as
To =0, Tn:Sn_SnfhneNa

are not independent anymore.



Proposition 2.3. For a non-stationary Poisson process with continuous mean function m(t), we have
Pr{T,11 > t|51,52,...,8:} = exp(—m(S, +1) +m(Sy)).

Proof. We define events A = {m(Sy41) > m(S,+1)} and B = {m(S,+1) > m(S, +1)}. Then, we have
A C{T,4+1 >t} C B. Hence, we can write

Pr{A|S1,S2,...,8u} < Pr{T,41 >1|S1,82,...,Su}.

The arrival instants Sy, ..., S, determine m(S1),...,m(S,),m(S, +1¢). Further, since m(Sy+1) —m(Sy) is
the inter-arrival time of the stationary Poisson process M(r), it is independent of Sy, 52, ...,S,

PEAIS1 .., Su} = Pr{m(Sy1) —m(S,) > m(Sy+1) —m(S)[St, ...Su} = exp(=m(S, +1) +m(S,)).

Result follows from the continuity of the exponential distribution. O

A Laplace functional

The Laplace functional £ of a point process @ and associated counting process N is defined for all
non-negative function f : RY — R as

caln)=Bexp (- [ 1N

For simple function f(x) = Zl ,ti11{x € A;}, we can write the Laplace functional

Lo(f) =Eexp( Zt,

as a function of the vector (¢1,1,, . ..,#), a joint Laplace transform of the random vector (N(A;),...,N(Ax)).
This way, one can compute all finite dimensional distribution of the counting process N.

Proposition A.1. The Laplace functional of the Poisson process with intensity measure A is
calp=e (- [ (1= )a@).
R
Proof. For a bounded Borel measurable set A C RY, consider g(x) = f(x)1{x € A}. Then,

Lo(g) = Bexp(— [ g(1)dN () = Eexp(~ [ f(x)aN ().

Clearly dN(x) = 8,1{x € ®} and hence we can write

Lo(g) = Eexp (— r | f(&-)) .
S;,ednA A

We know that the probability of N(A) = |®(A)| = n points in set A is given by

A A"

n!

P{N(A)=n}=e



Given there are n points in set A, the density of n point locations are independent and given by

d n
Isp Sy (X1 X)) = (//\\((Ax))) s X1, e Xy EA.

Hence, we can write the Laplace functional as

Lo(g) = o AA) Z AE?!)" lﬂ!/[;ef(xi)lt\(zz) = exp (_./H‘%d(l _ eg(x))[\(dx)> )

neNy

Result follows from taking increasing sequences of sets A, 1 R and monotone convergence theorem. [

A.1 Superposition of point processes

Theorem A.2. The superposition of independent Poisson point processes with intensities Ay, is a Poisson
point process with intensity measure Y, Ay, if and only if the latter is a locally finite measure.

A.2 Thinning of point processes

Consider a probability retention function p : R? — [0, 1] and a point process ®. The thinning of point
process ® = {S, € RY:neN } with the retention function p is a point process such that

B ={S, €D :Y(S,) =1},
where Y (S,) is an independent indicator stochastic process at each point S,, and EY (S,,) = p(Sy).

Theorem A.3. The thinning of the Poisson point process of intensity measure A with the retention prob-
ability function p yields a Poisson point process of intensity measure pA with

(PA)A) = [ px)A()

A
for all bounded Borel measurable A C R?.

Proof. Let A C RY be a bounded Boreal measurable set, and let f : R — R be a non-negative function.
Consider the Laplace functional of the thinned point process ®” for a non-negative function g(x) =

f)1{xea)
Canle) = T L{ [ (e 0+ (1= p)a@n)) =exp (= [ (1= pimaian) ).

neNy n

Result follows from taking increasing sequences of sets A; 1 R and monotone convergence theorem. [
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