
Lecture 06: Renewal Theory

1 Introduction
One of the characterization for the Poisson process is of it being a counting process with iid exponential
inter-arrival times. Now we shall relax the “exponential” part. As a result, we no longer have the nice
properties such as independent and stationary increments that Poisson processes had. However, we can
still get some great results which also apply to Poisson Processes.

1.1 Renewal instants
We will consider inter-arrival times {Xi : i ∈ N} to be a sequence of non-negative iid random variables
with a common distribution F , with finite mean µ and F(0) < 1. We interpret Xn as the time between
(n− 1)st and the nth renewal event. Let Sn denote the time of nth renewal instant and assume S0 = 0.
Then, we have

Sn =
n

∑
i=1

Xi, n ∈ N.

Second condition on inter-arrival times implies non-degenerate renewal process. If F(0) is equal to 1
then it is a trivial process. A counting process {N(t), t ≥ 0} with iid general inter-arrival times is called a
renewal process, written as

N(t) = sup{n ∈ N0 : Sn ≤ t}= ∑
n∈N

1{Sn≤t}.

Lemma 1.1 (Inverse Relationship). There is an inverse relationship between time of nth event Sn, and
the counting process N(t). That is

{Sn ≤ t} ⇐⇒ {N(t)≥ n}. (1)

Lemma 1.2 (Finiteness of N(t)). For all t > 0, the number of renewals N(t) in time [0, t) is finite.

Proof. We are interested in knowing how many renewals occur per unit time. From strong law of large
numbers, we know that the set {

Sn

n
= µ,n ∈ N

}
,

has probability measure unity. Further, since µ > 0, we must have Sn growing arbitrarily large as n
increases. Thus, Sn can be finite for at most finitely many n. Indeed, the following set

{N(t)≥ n,n ∈ N}= {Sn ≤ t,n ∈ N}=
{

Sn

n
≤ t

n
,n ∈ N

}
.

has measure zero for any finite t. Therefore, N(t) must be finite, and N(t) = max{n ∈ N0 : Sn ≤ t}.

1



1.2 Distribution functions
The distribution of renewal instant Sn is denoted by Fn(t), Pr{Sn ≤ t} for all t ∈ R.

Lemma 1.3. The distribution function Fn for renewal instant Sn can be computed inductively

F1 = F, Fn = Fn−1 ∗F ,
∫ t

0
Fn−1(t− y)dF(y),

where ∗ denotes convolution.

Proof. It follows from induction over sum of iid random variables.

Lemma 1.4. Counting process N(t) assumes non-negative integer values with distribution

Pr{N(t) = n}= Pr{Sn ≤ t}−Pr{Sn+1 ≤ t}= Fn(t)−Fn+1(t).

Proof. It follows from the inverse relationship between renewal instants and the renewal process (1).

Mean of the counting process N(t) is called the renewal function denoted by m(t) = E[N(t)].

Proposition 1.5. Renewal function can be expressed in terms of distribution of renewal instants as

m(t) = ∑
n∈N

Fn(t).

Proof. Using the inverse relationship between counting process and the arrival instants, we can write

m(t) = E[N(t)] = ∑
n∈N

Pr{N(t)≥ n}= ∑
n∈N

Pr{Sn ≤ t}= ∑
n∈N

Fn(t).

We can exchange integrals and summations since the integrand is positive using monotone convergence
theorem.

Proposition 1.6. Renewal function is bounded for all finite times.

Proof. Since we assumed that Pr{Xn = 0}< 1, it follow from continuity of probabilities that there exists
α > 0, such that Pr{Xn ≥ α}= β > 0. Define

X̄n = α1{Xn≥α}.

Note that since Xi’s are iid, so are X̄i’s, which are bivariate random variables taking values in {0,α} with
probabilities 1−β and β respectively. Let N̄(t) denote the renewal process with inter-arrival times X̄n,
with arrivals at integer multiples of α . Since X̄n ≤ Xn, we have N̄(t)≥ N(t) for all sample paths. Hence,
it follows that EN(t)≤ EN̄(t), and we will show that EN̄(t) is finite. We can write the joint distribution
of number of arrivals at each arrival instant lα , as

Pr{N̄(0) = n1, N̄(α) = n2}= Pr{Xi ≤ α, i≤ n1,Xn1+1 ≥ α,Xi < α,n1 +2≤ i≤ n2,Xn2+1 ≥ α}
= (1−β )n1β (1−β )n2−1

β

It follows that the number of arrivals is independent at each arrival instant kα and geometrically dis-
tributed with mean 1/β and (1−β )/β for k ≥ 1 and k = 0 respectively. Thus, for all t ≥ 0,

EN(t)≤ E[N̄(t)]≤
d t

α
e

β
≤

t
α
+1
β

< ∞.
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1.3 Basic renewal theorem
Lemma 1.7. Let N(∞), limt→∞ N(t). Then, Pr{N(∞) = ∞}= 1.

Proof. It suffices to show Pr{N(∞)< ∞}= 0. Since E[Xn]< ∞, we have Pr{Xn = ∞}= 0 and

Pr{N(∞)< ∞}= Pr
⋃

n∈N
{N(∞)< n}= Pr

⋃
n∈N
{Sn = ∞}= Pr{

⋃
n∈N
{Xn = ∞}} ≤ ∑

n∈N
Pr{Xn = ∞}= 0.

Notice that N(t) increases to infinity with time. We are interested in rate of increase of N(t) with t.

Theorem 1.8 (Basic Renewal Theorem).

lim
t→∞

N(t)
t

=
1
µ

almost surely.

Proof. Note that SN(t) represents the time of last renewal before t, and SN(t)+1 represents the time of first
renewal after time t. Consider SN(t). By definition, we have

Figure 1: Time-line visualization

SN(t) ≤ t < SN(t)+1

Dividing by N(t), we get
SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t)

By Strong Law of Large Numbers (SLLN) and the previous result, we have

lim
t→∞

SN(t)

N(t)
= µ a.s.

Also

lim
t→∞

SN(t)+1

N(t)
= lim

t→∞

SN(t)+1

N(t)+1
.
N(t)+1

N(t)

Hence by squeeze theorem, the result follows.

Suppose, you are in a casino with infinitely many games. Every game has a probability of win X ,
iid uniformly distributed between (0,1). One can continue to play a game or switch to another one.
We are interested in a strategy that maximizes the long-run proportion of wins. Let N(n) denote the
number of losses in n plays. Then the fraction of wins PW (n) is given by

PW (n) =
n−N(n)

n
.
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We pick a strategy where any game is selected to play, and continue to be played till the first loss.
Note that, time till first loss is geometrically distributed with mean 1

1−X . We shall show that this
fraction approaches unity as n→ ∞. By the previous proposition, we have:

lim
n→∞

N(n)
n

=
1

E[Time till first loss]

=
1

E
[ 1

1−X

] = 1
∞

= 0

Hence Renewal theorems can be used to compute these long term averages. We’ll have many such
theorems in the following sections.

1.4 Elementary renewal theorem
Basic renewal theorem implies N(t)/t converges to 1/µ almost surely. Now, we are interested in conver-
gence of E[N(t)]/t. Note that this is not obvious, since almost sure convergence doesn’t imply conver-
gence in mean.

Consider the following example. Let Xn be a Bernoulli random variable with Pr{Xn = 1}= 1/n.
Let Yn = nXn. Then, Pr{Yn = 0}= 1−1/n. That is Yn→ 0 a.s. However, E[Yn] = 1 for all n ∈ N. So
E[Yn]→ 1.

Even though, basic renewal theorem does NOT imply it, we still have E[N(t)]/t converging to 1/µ .

Theorem 1.9 (Elementary renewal theorem). Let m(t) denote mean E[N(t)] of renewal process N(t),
then under the hypotheses of basic renewal theorem, we have

lim
t→∞

m(t)
t

=
1
µ
.

Proof. Take µ < ∞. We know that SN(t)+1 > t. Therefore, taking expectations on both sides and using
Proposition A.2, we have

µ(m(t)+1)> t.

Dividing both sides by µt and taking liminf on both sides, we get

liminf
t→∞

m(t)
t
≥ 1

µ
.

We employ a truncated random variable argument to show the reverse inequality. We define truncated
inter-arrival times {X̄n} as

X̄n = Xn1{Xn≤M}+M1{Xn>M}.

We will call E[X̄n] = µM . Further, we can define arrival instants {S̄n} and renewal process N̄(t) for this
set of truncated inter-arrival times {X̄n} as

S̄n =
n

∑
k=1

X̄k, N̄(t) = sup{n ∈ N0 : S̄n ≤ t}.
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Note that since Sn ≥ S̄n, the number of arrivals would be higher for renewal process N̄(t) with truncated
random variables, i.e.

N(t)≤ N̄(t). (2)

Further, due to truncation of inter-arrival time, next renewal happens with-in M units of time, i.e.

S̄N̄(t)+1 ≤ t +M.

Taking expectations on both sides in the above equation, using Wald’s lemma for renewal processes,
dividing both sides by tµM , and taking limsup on both sides, we obtain

limsup
t→∞

m̄(t)
t
≤ 1

µM
.

Taking expectations on both sides of (2) and letting M go arbitrary large on RHS, we get

limsup
t→∞

m(t)
t
≤ 1

µ
.

Result follows for finite µ from combining liminf and limsup of the m(t)/t When µ grows arbitrary large,
results follow from liminf of m(t)/t, where RHS is zero.

1.5 Central limit theorem for renewal processes
Theorem 1.10. Let Xn be iid random variables with µ = E[Xn]< ∞ and σ2 =Var(Xn)< ∞. Then

N(t)− t
µ

σ

√
t

µ3

→d N(0,1)

Proof. Take u = t
µ
+ yσ

√
t

µ3 . We shall treat u as an integer and proceed, the proof for general u is an

exercise. Recall that {N(t)< u} ⇐⇒ {Su > t}. By equating probability measures on both sides, we get

Pr{N(t)< u}= Pr
{

Su−uµ

σ
√

u
>

t−uµ

σ
√

u

}
= Pr

{
Su−uµ

σ
√

u
>−y

(
1+

yσ√
tu

)2
}
.

By central limit theorem, Su−uµ

σ
√

u converges to a normal random variable with zero mean and unit variance
as t grows. Also, note that

lim
t→∞
−y
(

1+
yσ√

tu

)2

=−y.

These results combine with the symmetry of normal random variable to give us the result.

A Wald’s Lemma
An integer random variable T is called a stopping time with respect to the independent random sequence
{Xn : n ∈ N} if the event {N = n} depends only on {X1, · · · ,Xn} and is independent of {Xn+1,Xn+2, · · ·}.

Intuitively, if we observe the Xn’s in sequential order and N denotes the number observed before stop-
ping then. Then, we have stopped after observing, {X1, . . . ,XN}, and before observing {XN+1,XN+2, . . .}.
The intuition behind a stopping time is that it’s value is determined by past and present events but NOT
by future events.
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1. For instance, while traveling on the bus, the random variable measuring “Time until bus crosses
Majestic and after that one stop” is a stopping time as it’s value is determined by events before
it happens. On the other hand “Time until bus stops before Majestic is reached” would not be
a stopping time in the same context. This is because we have to cross this time, reach Majestic
and then realize we have crossed that point.

2. Consider Xn ∈ {0,1} iid Bernoulli(1/2). Then N = min{n ∈ N : ∑
n
i=1 Xi = 1} is a stopping

time. For instance, Pr{N = 2} = Pr{X1 = 0,X2 = 1} and hence N is a stopping time by
definition.

3. Random Walk Stopping Time Consider Xn iid bivariate random variables with

Pr{Xn = 1}= Pr{Xn =−1}= 1
2
.

Then N = min{n ∈ N : ∑
n
i=1 Xi = 1} is a stopping time.

A.1 Properties of stopping time
Let N1,N2 be two stopping times with respect to independent random sequence {Xi : i ∈ N} then,

i N1 +N2 is a stopping time.

ii min{N1,N2} is a stopping time.

Proof. Let {Xi : i ∈ N} be an independent random sequence, and N1,N2 associated stopping times.

i It suffices to show that the event {N1 +N2 = n} depends only on random variables {X1, . . . ,Xn} and
independent of {Xn+1, . . .}. To this end, we observe that

{N1 +N2 = n}=
n⋃

k=0

{N1 = k,N2 = n− k}.

Result follows since the events {N1 = k} and {N2 = n− k} depend solely on {X1, . . . ,Xn} for all
k ∈ {0, . . . ,n}.

ii It suffices to show that the event min{N1,N2}> n} depends solely on {X1, . . . ,Xn}.

min{N1,N2}> n}= {N1 > n}∩{N2 > n}.

The result follows since the events {N1 > n} and {N2 > n} depend solely on {X1, . . . ,Xn}.

Lemma A.1 (Wald’s Lemma). Let {Xi : i ∈ N} be iid random variables with finite mean E[X1] and
let N be a stopping time with respect to this set of variables, such that E[N]< ∞. Then,

E

[
N

∑
n=1

Xn

]
= E[X1]E[N].
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Proof. We first show that the event {N ≥ n} is independent of Xk, for any k≥ n. To this end, observe that

{N ≥ k}= {N < k}c = {N ≤ k−1}c =

(
k−1⋃
i=1

{N = i}

)c

.

Recall that N is a stopping time and the event {N = i} depends only on {X1, . . . ,Xi}, by definition.
Therefore, {N ≥ k} depends only on {X1, . . . ,Xk−1}, and is independent of the future and present samples.
Hence, we can write the Nth renewal instant for a stopping time N as

E

[
N

∑
n=1

Xn

]
= E

[
∑

n∈N
Xn1{N≥n}

]
= ∑

n∈N
EXnE

[
1{N≥n}

]
= EX1E

[
∑

n∈N
1{N≥n}

]
= E[X1]E[N].

We exchanged limit and expectation in the above step, which is not always allowed. We were able to do
it since the summand is positive and we apply monotone convergence theorem.

Proposition A.2 (Wald’s Lemma for Renewal Process). Let {Xn,n ∈ N} be iid inter-arrival times of a
renewal process N(t) with E[X1]< ∞, and let m(t) = E[N(t)] be its renewal function. Then, N(t)+1 is a
stopping time and

E

[
N(t)+1

∑
i=1

Xi

]
= E[X1][1+m(t)].

Proof. It is easy to see that {N(t)+1 = n} depends solely on {X1, . . . ,Xn} from the discussion below.

{N(t)+1 = n} ⇐⇒ {Sn−1 ≤ t < Sn} ⇐⇒

{
n−1

∑
i=1

Xi ≤ t <
n−1

∑
i=1

Xi +Xn

}
.

Thus N(t)+1 is a stopping time, and the result follows from Wald’s Lemma.
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