
Lecture 07: Regenerative Processes

1 Regenerative processes
A stochastic process Z = {Zt , t > 0} with the state space E is said to be regenerative if there exists a
sequence S = {Sn : n ∈ N} of stopping times such that

(a) regeneration times: S is a renewal process,

(b) regenerative property: for any n,m ∈ N and any bounded function f : En→ R, we have

E[ f (ZSm+t1 , . . . ,ZSm+tn)|Zu,u 6 Sm] = E f (Zt1 , . . . ,Ztn).

In particular, if the stochastic process Z is bounded, then for f (x) = x and n = m = 1, we have

E[ZS1+t |Zu,u 6 S1] = EZt .

The definition says that probability law is independent of the past and shift invariant at renewal times.
That is after each renewal instant, the process becomes an independent probabilistic replica of the process
starting from zero. Let F be the distribution of inter-renewal times, then for an open subset A ⊆ E and
t > 0, we define

K(t) = P{S1 > t,Zt ∈ A}, f (t) = P{Zt ∈ A}.

By the regeneration property applied at renewal instant S1, we have

P{Zt ∈ A|S1}= P{Zt−S1}= f (t−S1) on {S1 6 t}.

Hence, we have the renewal equation

f (t) = K(t)+
∫ t

0
dF(s) f (t− s) = K +F ∗ f .

We assume that the distribution function F and the kernel K are known, and we wish to find f , and
characterize its asymptotic behavior.

Theorem 1.1. The renewal equation has a unique solution f = (1+m)∗K, where m(t) = ∑n∈N Fn(t) is
the renewal function associated with the inter-renewal time distribution F.

Proof. It follows from the renewal equation that

F ∗ ((1+m)∗K) = ∑
n∈N

Fn ∗K = m∗K.

Hence, it is clear that m∗K is a solution to the renewal equation. For uniqueness, let f be another solution,
then h = f −K−m∗K satisfies h = F ∗h, and hence h = Fn ∗h for all n ∈ N. From finiteness of m(t), it
follows that Fn(t)→ 0 as n grows. Hence, limn∈N(Fn ∗h)(t) = 0 for each t.
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Proposition 1.2. Let Z be a regenerative process with state space E. Then for any t ≥ 0 and open A⊆ E,

P{Zt ∈ A}= K(t)+
∫ t

0
dm(s)K(t− s),

where m is the renewal function and K is the kernel function.

Theorem 1.3 (Key Lemma). Let N(t) be a renewal process, with mean m(t), iid inter-renewal times
{Xn} with distribution function F, and nth renewal instant Sn. Then,

Pr{SN(t) ≤ s}= F̄(t)+
∫ s

0
F̄(t− y)dm(y), t ≥ s≥ 0.

Proof. We can see that event of time of last renewal prior to t being smaller than another time s can be
partitioned into disjoint events corresponding to number of renewals till time t. Each of these disjoint
events is equivalent to occurrence of nth renewal before time s and (n+1)st renewal past time t. That is,

{SN(t) ≤ s}=
⋃

n∈N0

{SN(t) ≤ s,N(t) = n}=
⋃

n∈N0

{Sn ≤ s,Sn+1 > t}.

Recognizing that S0 = 0, S1 = X1, and that Sn+1 = Sn +Xn+1, we can write

Pr{SN(t) ≤ s}= Pr{X1 > t}+ ∑
n∈N

Pr{Xn+1 +Sn > t,Sn ≤ s}.

We recall Fn, n-fold convolution of F , is the distribution function of Sn. Conditioning on {Sn = y}, we
can write

Pr{SN(t) ≤ s}= F̄(t)+ ∑
n∈N

∫ s

y=0
Pr{Xn+1 > t−Sn,Sn ≤ s|Sn = y}dFn(y),

= F̄(t)+ ∑
n∈N

∫ s

y=0
F̄(t− y)dFn(y).

Using monotone convergence theorem to interchange integral and summation, and noticing that m(y) =
∑n∈N Fn(y), the result follows.

Key lemma tells us that distribution of SN(t) has probability mass at 0 and density between (0, t],
that is,

Pr{SN(t) = 0}= F̄(t), dFSN(t)(y) = F̄(t− y)dm(y) 0 < y≤ t.

Density of SN(t) has interpretation of renewal taking place in the infinitesimal neighborhood of y, and
next inter-arrival after time t− y. To see this, we notice

dm(y) = ∑
n∈N

dFn(y) = ∑
n∈N

Pr{nthrenewal occurs in(y,y+dy)}.

Combining interpretation of density of inter-arrival time dF(t), we get

dFSN(t)(y) = Pr{renewal occurs in (y,y+dy) and next arrival after t− y}.
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Lemma 1.4. Let F be the inter-renewal distribution such that inf{x : F(x) = 1}= ∞, then for any b > 0

sup
t
{m(t)−m(t−b)}< ∞.

Proof. We know that m∗F = m−1, so m∗ (1−F) = 1. Since the function 1−F is monotone,

1 =
∫ t

0
dm(s)[1−F(t− s)]≥ [m(t)−m(t−b)](1−F(b)),

where b is chosen so that F(b)< 1. Hence, the result follows.

A non-negative random variable X is said to be lattice if there exists d ≥ 0 such that

∑
n∈N

Pr{X = nd}= 1.

For a lattice X , its period is defined as

d = sup{d ∈ R+ : ∑
n∈N

Pr{X = nd}= 1}.

If X is a lattice random variable, its distribution function F is also called lattice.

Theorem 1.5 (Blackwell’s Theorem). Let the inter-renewal times have distribution F, mean µ , and the
associated renewal function m(t), such that inf{x : F(x) = 1}= ∞. If F is not lattice, then for all a≥ 0

lim
t→∞

m(t +a)−m(t) =
a
µ
.

If F is lattice with period d, then

lim
n→∞

m(t +d)−m(t) =
d
µ
.

Proof. We will not prove that
g(a) = lim

t→∞
[m(t +a)−m(t)] (1)

exists for non-lattice F . However, we show that if this limit does exist, it is equal to a/µ as a consequence
of elementary renewal theorem. To this end, note that

m(t +a+b)−m(t) = m(t +a+b)−m(t +a)+m(t +a)−m(t).

Taking limits on both sides of the above equation, we conclude that g(a+ b) = g(a)+ g(b). The only
increasing solution of such a g is

g(a) = ca,∀a > 0,

for some positive constant c. To show c = 1
µ

, define a sequence {xn,n ∈ N} in terms of m(t) as

xn = m(n)−m(n−1), n ∈ N.

Note that ∑
n
i=1 xi = m(n) and limn∈N xn = g(1) = c, hence we have

lim
n∈N

∑
n
i=1 xi

n
= lim

n∈N

m(n)
n

(a)
= c,

where (a) follows from the fact that if a sequence {xi} converges to c, then the running average sequence
an =

1
n ∑

n
i=1 xi also converges to c, as n→∞. Therefore, we can conclude c = 1/µ by elementary renewal

theorem.
When F is lattice with period d, the limit in (1) doesn’t exist. (See the following example). However,

the theorem is true for lattice trivially by elementary renewal theorem. Indeed, since m(t)
t →

1
µ

, we have

that m(nd)−m((n−1)d)→ 1
µ
[nd− (n−1)d] = d

µ
.
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For a trivial lattice example where the limt→∞ m(t +a)−m(t) does not exist, consider a renewal
process with Pr{Xn = 1} = 1, that is, there is a renewal at every positive integer time instant with
probability 1. Then F is lattice with d = 1. Now, for a = 0.5, and tn = n+(−1)n0.5, we see that
limtn→∞ m(tn +a)−m(tn) does not exist, and hence limt→∞ m(t +a)−m(t) does not exist.

In the lattice case, if the inter arrivals are strictly positive, that is, there can be no more than one
renewal at each nd, then we have that

lim
n→∞

P[renewal at nd] =
d
µ
. (2)
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