
Lecture 09: Age-Dependent Branching and Delayed
Renewal

1 Age-dependent branching process
Suppose a population where each organism lives for an iid random time period of X units with common
distribution function F . Just before dying, each organism produces a number of offsprings N, an iid
discrete random variable with common distribution P. Let X(t) denote the number of organisms alive
at time t. The stochastic process {X(t), t > 0} is called an age-dependent branching process. Let X(t)
be the number of individuals alive at time t. We are interested in computing M(t) = EX(t) when m =
E[N] = ∑ j∈N jPj. This is a popular model in biology for population growth of various organisms.

Theorem 1.1. If X(0) = 1, m > 1 and F is non lattice, then

lim
t→∞

e−αtM(t) =
m−1

m2α
∫

∞

0 xe−αxdF(x)
,

where α > 0 is the unique solution to the equation
∫

∞

0 e−αxdF(x) = 1
m .

Proof. Let T1 and N1 denote the life time and offsprings of the first organism. If T1 > t, then X(t) is still
equal to X(0) = 1. If T1 ≤ t, then X(T1) = N1 and each of the offsprings start the population growth,
independent of the past, and stochastically identical to the population growth of the original organism
starting at time T1. Hence, we can write X(t) = ∑

N1
i=0 Xi(t−T1) for this case. Therefore,

M(t) = E[X(t)1{T1 > t}]+E[X(t)1{T1 ≤ t}] = E[
∫

∞

t
dF(u)+

∫ t

0
dF(u)

N1

∑
i=0

Xi(t−u)] = F̄(t)+m
∫ t

0
M(t−u)dF(u).

This looks almost like a renewal function. Multiplying both sides of the above equation by e−αt , we get

M(t)e−αt = e−αt F̄(t)+m
∫ t

0
e−α(t−u)e−αudF(u).

If dG(t),me−αtdF(t) was a density function on R+, then the above equation would exactly be a renewal
equation, with the solution

M(t)e−αt = e−αt F̄(t)+
∫ t

0
e−α(t−u)F̄(t−u)dmG(u).

Here, mG(t) = ∑n∈N Gn(t) is the renewal function associated with inter-renewal distribution G. Clearly,
the α > 0 that ensures G is a distribution function is the unique solution to the equation

1 = G(1) = m
∫

∞

0
e−αtdF(t).
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Since e−αt F̄(t) is non-negative, monotone non-increasing and integrable, it directly Riemann integrable.
Hence, we can apply key renewal theorem to the limiting value of solution to renewal equation to obtain

lim
t→∞

M(t)e−αt =
1

µG

∫
∞

0
e−αt F̄(t)dt =

∫
∞

0 e−αt F̄(t)dt
m
∫

∞

0 xe−αtdF(t)
.

Result follows from integration by parts, and showing that∫
∞

0
e−αt F̄(t)dt =

1
α
− 1

α

∫
∞

0
e−αtdF(t) =

1
α

(
1− 1

m

)
.

2 Delayed renewal process
Many times in practice, we have a “delayed start to a renewal process”. That is, the arrival process has iid
inter-arrival times Ti for i≥ 2 with common distribution function F . Whereas, the first inter-arrival times
T1 is independent and has a different distribution G. The associated counting process is called a delayed
renewal process and denoted by {ND(t) : t > 0}. Let S0 = 0 and nth arrival instant Sn = ∑

n
i=1 Ti. Then,

then following inverse relationship holds between counting and arrival process,

ND(t) = sup{n ∈ N : Sn ≤ t}.

2.1 Distribution functions
Lemma 2.1. The distribution function of nth arrival instant Sn is

P{Sn ≤ t}= (G∗Fn−1)(t).

Lemma 2.2. The distribution function of counting process ND(t) is

P{ND(t) = n}= P(Sn ≤ t)−P(Sn+1 ≤ t) = (G∗Fn−1)(t)− (G∗Fn)(t).

Lemma 2.3. Let m(t) be the renewal function associated with a renewal process with inter-arrival distri-
bution F. Then, the renewal function mD(t) = END(t) associated with the delayed renewal process ND(t)
is

mD(t) = END(t) = ∑
n∈N

(G∗Fn−1)(t) = G(t)+(G∗m)(t).

Lemma 2.4. We denote the moment-generating function of a random variable with distribution mD(t),G(t),F(t)
by m̃D(s), G̃, F̃ respectively. Then,

m̃D(s) =
G̃(s)

1− F̃(s)

2.2 Limit theorems
The limit theorems for delayed renewal process are identical to those for renewal processes.

Lemma 2.5 (Basic renewal theorem). limt→∞
ND(t)

t = 1
µF

.
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Lemma 2.6 (Elementary renewal theorem). limt→∞
mD(t)

t = 1
µF

.

Lemma 2.7 (Blackwell’s theorem). If the inter-renewal distribution F is non-lattice, then

lim
t→∞

mD(t +a)−mD(t) =
a

µF
.

If the distributions F and G are lattice with period d, then

lim
n∈N

E[Number of renewals at nd] =
d

µF
.

Lemma 2.8 (Key renewal theorem). If F is non-lattice, µF < ∞ and h ∈ D, then

lim
t→∞

∫ t

0
h(t− x)dmD(x) =

1
µF

∫
∞

0
h(t)dt.

2.3 Distribution of the last renewal time
Using the regenerative process theory for s≤ t, we can write

P{SN(t) ≤ s}= Ḡ(t)+
∫ s

0
F̄(t−u)dm(u).

3 Equilibrium renewal process
For x≥ 0, we can define the equilibrium distribution of F as

Fe(x) =
1
µ

∫ x

0
F̄(y)dy.

Lemma 3.1. The moment generating function of Fe(x) is

F̃e(s) =
1− F̃(s)

sµ
.

Proof. By definition, F̃e(s) = E
[
e−sX

]
, where X is a random variable with distribution function Fe(x).

We use integration by parts, to write

F̃e(s) =
∫

∞

0
e−sxdFe(x) =

1
sµ
− 1

sµ

∫
∞

0
e−sxdF(x) =

1
sµ

(1− F̃(s)).

A delayed renewal process with the initial arrival distribution G = Fe is called the equilibrium re-
newal process. Observe that Fe is the limiting distribution of the age and the excess time for the renewal
process with common inter-renewal distribution F . Hence, if we start observing a renewal process at
some arbitrarily large time t, then the observed renewal process is the equilibrium renewal process. This
delayed renewal process exhibits stationary properties. That is, the limiting behaviors are exhibited for
all times.

Theorem 3.2 (renewal function). The renewal function me(t) for the equilibrium renewal process is
linear for all times. That is, me(t) = t

µ
.
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Proof. We know that the Laplace transform of renewal function me(t) is given by

m̃e(s) =
G̃(s)

1− F̃(s)
=

F̃e(s)
1− F̃(s)

=
1

sµ
.

Further, we know that the Laplace transform of function t/µ is given by

Lt/µ(s) =
1
µ

∫
∞

0
e−sxdx =

1
sµ

.

Since moment generating function is a one-to-one map, me(t) = t
µ

is the unique renewal function.

Theorem 3.3 (excess time). The distribution of excess time Ye(t) for the equilibrium renewal process is
stationary. That is,

P(Ye(t)≤ x) = Fe(x), t ≥ 0.

Proof. Since the excess time Ye(t) is regenerative process and dme(t) = 1/µ , we can write

P{Ye(t)> x}= F̄e(t + x)+
1
µ

∫ t

0
F̄(t + x−u)du = F̄e(t + x)+

1
µ

∫ t+x

x
F̄(y)dy = F̄e(x).

Theorem 3.4 (stationary increments). The counting process {Ne(t), t > 0} for the equilibrium renewal
process has stationary increments.

Proof. When we start observing the process at time s, the observed renewal process is delayed renewal
process with initial distribution being the original distribution. Hence, the number of renewals Ne(t+s)−
Ne(s) = Ne(t) in time interval of duration t is shift invariant.

3.1 Exponential renewal intervals
Consider the case, when inter-renewal time distribution F for a delay renewal process is exponential with
rate λ . Here, one would expect the equilibrium distribution Fe = F , since Poisson process has stationary
and independent increments. We observe that

Fe(x) =
1
µ

∫ x

0
F̄(y)dy = λ

∫ x

0
e−λydy = 1− e−λx = F(x).

We see that Fe is also distributed exponentially with rate λ . Indeed, this is a Poisson process with rate λ .
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