
Lecture 11: Discrete Time Markov Chains

1 Introduction
We have seen that iid sequences are easiest discrete time processes. However, they don’t capture correla-
tion well. Hence, we look at the discrete time stochastic processes of the form

Xn+1 = f (Xn,Zn+1),

where {Zn : n ∈ N} is an iid sequence, independent of initial state X0. If Xn ∈ E for all n ∈ N0, then E
is called the state space of process X . We consider a countable state space, and if Xn = i ∈ E, then we
say that the process X is in state i at time n. For a countable set E, a stochastic process {Xn ∈ E,n ∈
N0} is called a discrete time Markov chain (DTMC) if for all positive integers n ∈ N0 and all states
i0, i1, . . . , in−1, i, j ∈ E, the process X satisfies the Markov property

P{Xn+1 = j|Xn = i,Xn−1 = in−1, · · · ,X0 = i0}= P{Xn+1 = j|Xn = i}.

1.1 Homogeneous Markov chain
If for each n ∈ N0, we have pi j(n) , P{Xn+1 = j|Xn = i} = pi j. That is, when the transition probability
does not depend on n, the DTMC is homogeneous and the matrix P = {pi j : i, j ∈ E} is called the
transition matrix.

For all states i, j ∈ E, if a non-negative matrix A ∈ RE×E
+ has the following property

ai j ≥ 0, ∑
j∈E

ai j ≤ 1,

then it is called a sub-stochastic matrix. If the second property holds with equality, then it is called
a stochastic matrix. If in addition, AT is stochastic, then A is called doubly stochastic. Clearly, the
transition matrix P is stochastic matrix.

1.2 Transition graph
A transition matrix P is sometimes represented by a directed graph G = (E,{[i, j) ∈ E×E : pi j > 0}). In
addition, this graph has a weight pi j on each edge e = [i, j).

2 Chapman Kolmogorov equations
We can define n-step transition probabilities for i, j ∈ E and m,n ∈ N

p(n)i j , P{Xn+m = j|Xm = i}.
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It follows from the Markov property and law of total probability that

p(m+n)
i j = ∑

k∈E
p(m)

ik p(n)k j .

We can write this result compactly in terms of transition probability matrix P as P(n) = Pn. Let ν ∈RE
+ is

a probability vector such that

νn(i) = P{Xn = i}.

Then, we can write this vector νn in terms of initial probability vector ν0 and the transition matrix P as

νn = ν0Pn.

2.1 Strong Markov property (SMP)
Let T be an integer valued stopping time with respect to the stochastic process X such that P{T < ∞}= 1.
Then for all i0, . . . , in−1, . . . , i, j ∈ E, the process X satisfies the strong Markov property if

P{XT+1 = j|XT = i, . . . ,X0 = i0}= P{XT+1 = j|XT = i}.

Lemma 2.1. Markov chains satisfy the strong Markov property.

Proof. Let X be a Markov chain and A = {XT = i, . . . ,X0 = i0}. Then, we have

P{XT+1 = j|A}=
∑n∈N0

P{XT+1 = j,A,T = n}
P{A}

= ∑
n∈N0

pi j
P(A,T = n)

P(A)
= pi j.

This equality follows from the fact that {T = n} is completely determined by {X0, . . . ,Xn}

As an exercise, if we try to use the Markov property on arbitrary random variable T , the SMP may
not hold. For example, define a non-stopping time T for j ∈ E

T = inf{n ∈ N0 : Xn+1 = j}.

In this case, we have

P{XT+1 = j|XT = i, . . . ,X0 = i0}= 1{pi j > 0} 6= P{X1 = j|X0 = i}= pi j.

A useful application of the strong Markov property is as follows. Let i0 ∈ E be a fixed state and τ0 = 0
Let τn denote the stopping times at which the Markov chain visits i0 for the nth time. That is,

τn = inf{n > τn−1 : Xn = i0}.

Then {Xτn+m : m ∈ N0} is a stochastic replica of {Xm : m ∈ N0} with X0 = i0 and can be studied as a
regenerative process.

3 Communicating classes

State j ∈ E is said to be accessible from state i ∈ E if p(n)i j > 0 for some n ∈ N, and denoted by i→ j. If
two states i, j ∈ E are accessible to each other, they are said to communicate with each other, denoted by
i↔ j. A set of states that communicate are called a communicating class.
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Proposition 3.1. Communication is an equivalence relation.

Proof. Reflexivity and Symmetry are obvious. For transitivity, suppose i ↔ j and j ↔ k. Suppose
p(m)

i j > 0 and p(n)jk > 0. Then by Chapman Kolmogorov, we have

p(m+n)
ik = ∑

l∈N0

p(m)
il p(n)lk ≥ p(m)

i j p(n)jk > 0

Hence transitivity is assured.

3.1 Irreducibility and periodicity
A consequence of the previous result is that communicating classes are disjoint or identical. A Markov
chain with a single class is called an irreducible Markov chain. The period of state i is defined as

d(i) = gcd{n ∈ N0 : p(n)ii > 0}

If the period is 1, we say the state is aperiodic.

Proposition 3.2. If i↔ j, then d(i) = d( j). Basically, periodicity is a class property.

Proof. Let m and n be such that p(m)
i j p(n)ji > 0. Suppose p(s)ii > 0. Then

p(n+m)
j j ≥ p(n)ji p(m)

i j > 0

p(n+s+m)
j j ≥ p(n)ji p(s)ii p(m)

i j > 0

Hence d( j)|n+m and d( j)|n+ s+m which implies d( j)|s. Hence d( j)|d(i). By symmetrical arguments,
we get d(i)|d( j). Hence d(i) = d( j).

3.2 Transient and recurrent states
Let f (n)i j denote the probability that starting from state i, the first transition into state j happens at time n.
Then let

fi j =
∞

∑
n=1

f (n)i j

Here fi j would therefore denote the probability of ever entering state j given that we start at state i. State
j is said to be transient if f j j < 1 and recurrent if f j j = 1.

Proposition 3.3. The total number of visits to a state j ∈ E is denoted by N j = ∑n∈N0
1{Xn = j}. Then,

for each m ∈ N and i 6= j, we have

Pj{N j = m}= f m−1
j j (1− f j j), m ∈ N

Pi{N j = m}=

{
1− fi j m = 0,
fi j f m−1

j j (1− f j j) m ∈ N.
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Proof. For each k ∈ N, the time of the kth visit to the state j is a stopping time. From strong Markov
property, the next return to state j is independent of the past. Hence, each return to state j is an iid
Bernoulli random variable with probability f j j. It follows that the number of visits j is the time for first
failure to return. Conditioned on X0 = j, the distribution of N j is geometric random variable with success
probability 1− f j j.

Conditioned on X0 = i, the stopping time of first visit to j is a Bernoulli random variable with proba-
bility fi j. Hence, the second result follows.

Corollary 3.4. For a Markov chain X, Pj{N j < ∞}= 1{ f j j < 1}.

Proof. We can write the event {N j < ∞} as disjoint union of events {N j = n}, to get

Pj{N j ∈ N}= ∑
n∈N

Pj{N j = n}= 1{ f j j < 1}.

In particular, this corollary implies the following

1. A transient state is visited a finite amount of times almost surely.

2. A recurrent state is visited infinitely often almost surely.

3. In a finite state Markov chain, not all states may be transient.

Proposition 3.5. A state j is recurrent iff ∑k∈N p(k)j j = ∞.

Proof. For any state j ∈ E, we can write

p(k)ii = Pi{Xk = i}= Ei1{Xk = i}.

Using monotone convergence theorem to exchange expectation and summation, we obtain

∑
k∈N

p(k)ii = Ei ∑
k∈N

1{Xk = i}= EiNi.

Thus, ∑k∈N p(k)ii represents the expected number of returns EiNi to a state i starting from state i, which we
know to be finite if the state is transient and infinite if the state is recurrent.

Proposition 3.6. Transience and recurrence are class properties.

Proof. Let us start with proving recurrence is a class property. Let i be a recurrent state and let i↔ j.
Hence there exist some m,n > 0, such that p(m)

i j > 0 and p(n)ji > 0. As a consequence of the recurrence,

∑s∈N0
p(s)ii = ∞. It follows that j is recurrent by observing

∑
s∈N0

p(m+n+s)
j j ≥ ∑

s∈N0

p(n)ji p(s)ii p(m)
i j = ∞.

Now, if i were transient instead, we conclude that j is also transient by the following observation

∑
s∈N0

p(s)j j ≤
∑s∈N0

p(m+n+s)
ii

p(n)ji p(m)
i j

< ∞.

Corollary 3.7. If j is recurrent, then for any state i such that i↔ j, fi j = 1.
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