Lecture 11: Discrete Time Markov Chains

1 Introduction

We have seen that iid sequences are easiest discrete time processes. However, they don’t capture correla-
tion well. Hence, we look at the discrete time stochastic processes of the form

Xn+l = f(Xn»ZnJrl)»

where {Z, : n € N} is an iid sequence, independent of initial state Xy. If X,, € E for all n € Ny, then E
is called the state space of process X. We consider a countable state space, and if X;, =i € E, then we
say that the process X is in state i at time n. For a countable set E, a stochastic process {X, € E,n €
Np} is called a discrete time Markov chain (DTMC) if for all positive integers n € Ny and all states
i0,01,.--5in—1,1,j € E, the process X satisfies the Markov property

P{Xn+1 = j|Xn =0i,Xp1=lipn-1,,Xo= iO} = P{Xn+1 = ]‘Xn = l}

1.1 Homogeneous Markov chain

If for each n € Ny, we have p;;(n) EP{Xy = j|X, =i} = pij- That is, when the transition probability
does not depend on n, the DTMC is homogeneous and the matrix P = {p;; : i,j € E} is called the
transition matrix.

For all states i, j € E, if a non-negative matrix A € REXE has the following property

a;j > 0, Y aij<1,
jEE

then it is called a sub-stochastic matrix. If the second property holds with equality, then it is called
a stochastic matrix. If in addition, AT is stochastic, then A is called doubly stochastic. Clearly, the
transition matrix P is stochastic matrix.

1.2 Transition graph

A transition matrix P is sometimes represented by a directed graph G = (E,{[i, j) € E X E : p;; > 0}). In
addition, this graph has a weight p;; on each edge e = [i, j).

2 Chapman Kolmogorov equations

We can define n-step transition probabilities for i, j € E and m,n € N

P2 P = j1Xn =i},



It follows from the Markov property and law of total probability that

(m+n) (m) (n)
bij = Z Pig Pyj -
keE

‘We can write this result compactly in terms of transition probability matrix P as P =P Letve Rﬁ is
a probability vector such that

Vu(i) = P{X, =i}.
Then, we can write this vector v, in terms of initial probability vector vy and the transition matrix P as

V, = WoP".

2.1 Strong Markov property (SMP)

Let T be an integer valued stopping time with respect to the stochastic process X such that P{T < e} = 1.
Then for all iy, ...,i,—1,...,i,j € E, the process X satisfies the strong Markov property if

P{Xri1 = jlXr =1i,....Xo =io} = P{Xr41 = j|Xr = i}.
Lemma 2.1. Markov chains satisfy the strong Markov property.

Proof. Let X be a Markov chain and A = {X7 =1i,...,Xy = ip}. Then, we have

ZHEN P{XT+1 :J7A7T:n} P(A,T:}’l)
P{Xr41 = jlA} = ° =) pij—s———=pij.
PLA) Ly
This equality follows from the fact that {T = n} is completely determined by {Xo,...,X,} O

As an exercise, if we try to use the Markov property on arbitrary random variable 7', the SMP may
not hold. For example, define a non-stopping time 7 for j € E

T =inf{n € Ny : X,11 = j}.
In this case, we have
P{X]url :j|X1‘ = i,...,XO = io} = 1{[71']' > 0} #P{Xl =]|X0 :l} = Pij-

A useful application of the strong Markov property is as follows. Let iy € E be a fixed state and 79 = 0
Let 7, denote the stopping times at which the Markov chain visits ig for the nth time. That is,

T, =inf{n > 1,1 : X, = io}.

Then {X,+m : m € Ny} is a stochastic replica of {X,, : m € No} with Xo = iy and can be studied as a
regenerative process.

3 Communicating classes

State j € E is said to be accessible from state i € E if pl(»;o > 0 for some n € N, and denoted by i — j. If
two states i, j € E are accessible to each other, they are said to communicate with each other, denoted by
i <> j. A set of states that communicate are called a communicating class.



Proposition 3.1. Communication is an equivalence relation.

Proof. Reflexivity and Symmetry are obvious. For transitivity, suppose i <+ j and j <> k. Suppose

pl(;") > 0 and pi.',? > 0. Then by Chapman Kolmogorov, we have
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Hence transitivity is assured. O

3.1 Irreducibility and periodicity
A consequence of the previous result is that communicating classes are disjoint or identical. A Markov
chain with a single class is called an irreducible Markov chain. The period of state i is defined as
d(i) = ged{n € Ny : p\/’ > 0}
If the period is 1, we say the state is aperiodic.
Proposition 3.2. Ifi <> j, then d(i) = d(j). Basically, periodicity is a class property.

(m) (n)

Proof. Letm and n be such that p;i" p;’ > 0. Suppose p&) > 0. Then

il

(tm) < (n) (m)

pjj =z pji pij >0

p;r]t_+s+m) > pgfiz) pl(iw pl(;n) <0
Hence d(j)|n+m and d(j)|n+ s+ m which implies d(j)|s. Hence d(j)|d(i). By symmetrical arguments,
we get d(i)|d(j). Hence d(i) = d(j). O
3.2 Transient and recurrent states

Let fl-(;) denote the probability that starting from state i, the first transition into state j happens at time .
Then let

_
fij = Z fz j
n=1
Here f;; would therefore denote the probability of ever entering state j given that we start at state i. State

J is said to be transient if f;; < 1 and recurrentif f;; = 1.

Proposition 3.3. The total number of visits to a state j € E is denoted by Nj = ¥.,cn, 1{Xy = j}. Then,
for eachm € N and i # j, we have

Pi{N;=m} = f}""(1—fj;), meN

P{Nj=m} = {

1_fij sz,
fij ;ﬁ_l(]—fj/) m € N.



Proof. For each k € N, the time of the kth visit to the state j is a stopping time. From strong Markov
property, the next return to state j is independent of the past. Hence, each return to state j is an iid
Bernoulli random variable with probability f;;. It follows that the number of visits j is the time for first
failure to return. Conditioned on Xy = j, the distribution of N; is geometric random variable with success
probability 1 — fj;.

Conditioned on Xy = i, the stopping time of first visit to j is a Bernoulli random variable with proba-
bility f;;. Hence, the second result follows. O

Corollary 3.4. For a Markov chain X, Pi{N; < e} = 1{f;; < 1}.

Proof. We can write the event {N; < oo} as disjoint union of events {N; = n}, to get

Pi{N; eN} =Y Pi{N;=n}=1{f;; <1}.

neN

In particular, this corollary implies the following
1. A transient state is visited a finite amount of times almost surely.
2. A recurrent state is visited infinitely often almost surely.
3. In a finite state Markov chain, not all states may be transient.
Proposition 3.5. A state j is recurrent iff Y jen py;-) = oo,
Proof. For any state j € E, we can write
P =Pi{X =i} =E1{X, = i}.

Using monotone convergence theorem to exchange expectation and summation, we obtain

Z pl(lk) :Ei Z 1{Xk = i} = E,]V,
keN keN

Thus, Y ren pflk ) represents the expected number of returns [E;N; to a state i starting from state i, which we
know to be finite if the state is transient and infinite if the state is recurrent. O

Proposition 3.6. Transience and recurrence are class properties.

Proof. Let us start with proving recurrence is a class property. Let i be a recurrent state and let i <> ;.
Hence there exist some m,n > 0, such that p!"™

ij
YseN p,(f ) — oo, It follows that J is recurrent by observing

() (m) (5) (m) _
Yoz X pipa by =
seNy seNp

> 0 and p?? > (. As a consequence of the recurrence,

Now, if i were transient instead, we conclude that j is also transient by the following observation

(m+n—+s)
(s) ZSEN() Di;
Y P ST <
SGNO ji Plj

Corollary 3.7. If j is recurrent, then for any state i such that i < j, f;; = 1.
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