
Lecture 12 : Limit Theorems for Markov Chains

1 Limit Theorems
Let N j(t) denote the number of transitions into state j ∈ E up to time t. That is,

N j(t) =
t

∑
k=1

1{Xk = j}.

Let S0 = 0, then we can define the nth arrival instants of state j as a stopping time

Sn( j) = inf{k > Sn−1( j) : Xk = j}.

From strong Markov property it follows that X is a regenerative process with regenerative sequence
S( j) = {Sn( j) : n ∈ N}. We can define the inter-renewal duration, the number of time steps to return to
the state j as

Tn( j) = Sn( j)−Sn−1( j).

If X0 = j and j is recurrent, then S( j) is a renewal process with the iid inter-arrival distribution,

Pj{T1( j) = k}= f (k)j j , k ∈ N.

Let µ j j = E jT1( j) be the mean inter-arrival time for the renewal process. Then,

µ j j =

{
∞ j transient,

∑k∈N k f (k)j j j recurrent.

If X0 = i 6= j, for some i↔ j and j recurrent, then S( j) is a delayed renewal process with first inter-arrival
distribution

Pi{T1( j) = k}= f (k)i j , k ∈ N.

The associated counting process N j(t) has the inverse relationship with the renewal process S( j). From
the renewal theory, we have the following results.

Proposition 1.1 (basic renewal theorem). If i↔ j, then Pi

{
limn∈N

N j(n)
n = 1

µ j j

}
= 1.

Proposition 1.2 (elementary renewal theorem). If i↔ j, then

lim
n∈N

∑
n
k=1 p(k)i j

n
= lim

n∈N

Ei[N j(n)]
n

=
1

µ j j
.
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Proposition 1.3 (Blackwell’s theorem). If j is aperiodic (i.e., d( j) = 1), then

lim
n∈N

p(n)i j = lim
n∈N

Ei[# renewals at n] =
1

µ j j

If j is periodic with period d, then

lim
n∈N

p(nd)
i j = lim

n∈N
Ei[# renewals at nd] =

d
µ j j

.

2 Positive and Null recurrence
A recurrent state j is said to be positive recurrent if µ j j < ∞ and null recurrent if µ j j = ∞. Let

π j , lim
n∈N

p(nd)
j j ,

where d is the period of state j. Then π j > 0 if and only if j is positive recurrent and π j = 0 if j is
null-recurrent.

Proposition 2.1. Positive recurrence and null recurrence are class properties.

An state that is aperiodic and positive recurrent is called ergodic. For a homogeneous Markov chain
on state space E with transition probability matrix E, a probability distribution {π j : j ∈ E} is said to be
stationary if for all states j ∈ E

π j = ∑
k∈E

πkPk j.

More compactly, π is stationary if π = πP.
Observe that for a Markov chain starting with its stationary distribution, then the distribution remains

invariant for all times. That is, if π is the stationary distribution, and the Markov chain has initial distri-
bution ν(0) = π at time 0, then at any time n ∈N, the Markov chain has distribution ν(n) = π . Moreover
since Xn has discrete states in E, the finite collection (Xn,Xn+1, ...Xn+m) have the same joint distribution.
Hence it is a stationary process, and for all k,m ∈ N, i ∈ Ek

P{X1 = i1, . . . ,Xk = ik}= P{Xm+1 = i1, . . . ,Xm+k = ik}.

Theorem 2.2. An irreducible, aperiodic Markov Chain with countable state space E is of one of the
following types.

i) All the states are either transient or null recurrent. For all states i, j ∈ E,

lim
n∈N

Pn
i j = 0,

and there exists no stationary distribution.

ii) All the states are positive recurrent, and hence the chain is ergodic. There exists a unique stationary
distribution π ∈ ∆(E), defined for all i, j ∈ E

π j , lim
n∈N

Pn
i j > 0.

Proof. Let {Xn : n ∈ N} be an irreducible, aperiodic Markov chain with countable state space E.
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i) Suppose that all states are either transient or null recurrent. Note that exactly one of these will hold
since there is only one communicating class. This implies that µ j j = ∞ for each state j ∈ E, and it
follows from Blackwell’s theorem applied to renewals for Markov chains that for any states i, j ∈ E

lim
n∈N

P(n)
i j =

1
µ j j

= 0.

If there existed a stationary distribution π ∈ ∆(E) in this case. For any step size n ∈ N and states
i, j ∈ E, we would then have

π j = ∑
i∈E

πiP
(n)
i j , P(n)

i j ≤ 1.

We can change limits and summation using dominated convergence theorem, to get for any j ∈ E

π j = ∑
i∈E

πi lim
n∈N

P(n)
i j = 0.

This contradicts π being a stationary distribution, proving the first part of the theorem.

ii) We assume that all states are positive recurrent. From the theorem hypothesis, elementary renewal
theorem, and positive recurrence, we get

π j = lim
n∈N

P(n)
i j = 1/µ j j > 0.

Further, for any finite set A⊆ E, we have

∑
j∈A

P(n)
i j ≤ ∑

j∈E
P(n)

i j = 1.

Taking limit n ∈ N on both sides, we conclude that ∑ j∈A π j ≤ 1 for all A finite. Taking limit with
respect to increasing sets A ↑ E, we conclude,

∑
j∈E

π j ≤ 1.

Further, we can write for all A⊆ E,

Pn+1
i j = ∑

k∈E
Pn

ikPk j ≥ ∑
k∈A

Pn
ikPk j.

Applying limit n∈N on both sides, we get π j ≥∑k∈A πkPk j for all A finite. Hence, taking limits with
respect to increasing sets A ↑ E, we get for all state j ∈ E,

π j ≥ ∑
k∈E

πkPk j.

Assuming that the inequality is strict for some state j ∈ E, we can sum the inequalities over all states
j ∈ E. Since, summands are non-negative we can exchange summation orders to get

∑
j∈E

π j > ∑
j∈E

∑
k∈E

πkPk j = ∑
k∈E

πk ∑
j∈E

Pk j = ∑
k∈E

πk.

This is a contradiction. Therefore, for any state j ∈ E

π j = ∑
k∈E

πkPk j.
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Defining normalized w j =
π j

∑k∈I πk
, we see that {w j : j ∈ E} is a stationary distribution and so at least

one stationary distribution exists. If the initial distribution of this positive recurrent Markov chain is
a stationary distribution {λ j : j ∈ E}, then for any finite subset A⊆ E, we get

λ j = Pr{Xn = j}= ∑
i∈E

Pn
i jλi ≥∑

i∈A
Pn

i jλi.

As before, we take limit n ∈ N, followed by limit of increasing subsets A ↑ E, to obtain

λ j ≥ ∑
i∈E

π jλi = π j.

To show λ j ≤ π j, we use the fact that Pn
i j ≤ 1. Let A⊆ E be a finite subset, then

λ j = ∑
i∈I

Pn
i jλi = ∑

i∈A
Pn

i jλi +∑
i/∈A

Pn
i jλi ≤∑

i∈A
Pn

i jλi +∑
i/∈A

λi.

Using our standard approach of taking limit n ∈ N, followed by A ↑ E, we obtain

λ j ≤ ∑
i∈E

π jλi = π j.

Corollary 2.3. An irreducible, aperiodic Markov chain defined on a finite state space E will be positive
recurrent.

Proof. Suppose that the Markov chain is not positive recurrent, then

lim
n∈N

P(n)
i j = 0.

Interchanging limit and finite summation gives

0 = ∑
j∈E

lim
n∈N

P(n)
i j = lim

n∈N ∑
j∈E

P(n)
i j = 1.

This is a contradiction. Hence the above mentioned chain is positive recurrent.

Corollary 2.4. For an irreducible and aperiodic Markov chain with stationary distribution π on count-
able state space E, we have

E j[T1( j)], E[T1( j)|X0 = j] =
1
π j

, j ∈ E.

Further, we can define the number of visits to state i during one renewal duration S1( j) as

Ni(S1( j)) =
S1( j)

∑
k=1

1{Xn = i}.

Proposition 2.5. For an aperiodic and irreducible Markov chain X with stationary distribution π on
countable state space E, the mean number of visits to state i in one return to state j is given

E jNi(S1( j)) =
πi

π j
.
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Proof. Let X0 = j ∈ E, then from renewal reward theorem for renewal sequence S(i) and definition of π ,

lim
n∈N

Pj{Xn = i}= lim
n∈N

∑
n
k=1 1{Xk = i}

n
=

1
Ei[T1(i)]

= πi.

Result follows from rewriting of the above expression for renewal sequence S( j) as

lim
n∈N

Pj{Xn = i}= lim
n∈N

∑
n
k=1 1{Xk = i}

n
=

E j ∑
S1( j)
k=1 1{Xk = i}
E jS1( j)

=
E jNi(S1( j))
E jT1( j)

= π jE jNi(S1( j)).

2.1 Ergodic theorem for Markov Chains
Proposition 2.6. Let {Xn : n ∈N0} be an irreducible, aperiodic, and positive recurrent Markov chain on
countable state space E with stationary distribution π . Let f : E → R, such that ∑i∈E | f (i)|πi < ∞, that
is f is integrable over E with respect to π . Then for any initial distribution of X0,

lim
n∈N

1
n

n

∑
i=1

f (Xi) = ∑
i∈E

πi f (i) almost surely.

Proof. Fix X0 = i ∈ E. Let S(i) be sequence of successive instants at which state i is visited, with S0(i) =

0. For all p ≥ 0, let Rp+1 = ∑
S(p+1)
n=Sp(i)+1 f (Xn) be the net reward earned at the end of cycle (p+1). Each

cycle forms a renewal. By the strong Markov property, these cycles are independent. At each of these
stopping times, Markov chain is in state i∈ E. Since EiS1(i) = 1/πi, we get from renewal reward theorem

lim
n∈N

∑
n
k=1 Rk

n
= πiEi[

S1(i)

∑
n=1

f (Xn)] = πiEi

S1(i)

∑
n=1

∑
j∈E

f ( j)1{Xn = j}.

Using dominated convergence theorem, and substituting the mean number of visits to state j during
successive return to state j, we can write

lim
n∈N

∑
n
k=1 Rk

n
= πiEi ∑

j∈E
f ( j)

S1(i)

∑
n=1

1{Xn = j}= πi ∑
j∈E

f ( j)EiN j(S1(i)) = ∑
j∈E

π j f ( j).
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