Lecture 12 : Limit Theorems for Markov Chains

1 Limit Theorems
Let N;(r) denote the number of transitions into state j € E up to time 7. That is,
1
Nj(e) =Y H{Xe = j}-
k=1
Let So = 0, then we can define the nth arrival instants of state j as a stopping time
Sn(]) = lnf{k > Snfl(j) (X = J}
From strong Markov property it follows that X is a regenerative process with regenerative sequence

S(j) = {Sn(j) : n € N}. We can define the inter-renewal duration, the number of time steps to return to
the state j as

Tu(J) = Sn(J) = Sn-1(J)-
If Xp = j and j is recurrent, then S(j) is a renewal process with the iid inter-arrival distribution,
. k
PATI()) =k} =11}, kEN,

Let u;; = E;T1(j) be the mean inter-arrival time for the renewal process. Then,

oo J transient,
Hjj= ;
o Yienkf J(f) J recurrent.

If Xo =i # j, for some i <> j and j recurrent, then S(j) is a delayed renewal process with first inter-arrival
distribution

PATI(j)=k} =P, keN.

The associated counting process N;(¢) has the inverse relationship with the renewal process S(j). From
the renewal theory, we have the following results.

Proposition 1.1 (basic renewal theorem). Ifi < j, then P; {limneN N’}E") = ﬂi} =1
7]

Proposition 1.2 (elementary renewal theorem). Ifi <> j, then
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Proposition 1.3 (Blackwell’s theorem). If j is aperiodic (i.e., d(j) = 1), then

; . 1
limpl(?) = imE;[# renewals at n] = —
neN" Y neN Hjj

If j is periodic with period d, then

lim pl('-ld) = lim E;[# renewals at nd] = —.
neN" Y neN Hjj

2 Positive and Null recurrence

A recurrent state j is said to be positive recurrent if pi;; < o and null recurrent if y1;; = oo. Let

T = limp<"d)

neN Ji

where d is the period of state j. Then 7; > 0 if and only if j is positive recurrent and 7; = 0 if j is
null-recurrent.

Proposition 2.1. Positive recurrence and null recurrence are class properties.

An state that is aperiodic and positive recurrent is called ergodic. For a homogeneous Markov chain
on state space E with transition probability matrix E, a probability distribution {7; : j € E} is said to be
stationary if for all states j € E

T = Z ﬂ'kij.
keE

More compactly, 7 is stationary if 7 = 7P.

Observe that for a Markov chain starting with its stationary distribution, then the distribution remains
invariant for all times. That is, if 7 is the stationary distribution, and the Markov chain has initial distri-
bution v(0) = 7 at time 0, then at any time n € N, the Markov chain has distribution v(n) = ©. Moreover
since X, has discrete states in E, the finite collection (X, X+ 1, ...Xy+m ) have the same joint distribution.
Hence it is a stationary process, and for all k,m € N,i € EX

P{Xi=i1,.... Xk =it} = P{X1 =101, , Xppak = i}

Theorem 2.2. An irreducible, aperiodic Markov Chain with countable state space E is of one of the
following types.

i) All the states are either transient or null recurrent. For all states i, j € E,

lim P!

L)
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and there exists no stationary distribution.

ii) All the states are positive recurrent, and hence the chain is ergodic. There exists a unique stationary
distribution © € A(E), defined for all i, j € E

A g 71
m; = limP" > 0.
J neN Y

Proof. Let {X, : n € N} be an irreducible, aperiodic Markov chain with countable state space E.



i) Suppose that all states are either transient or null recurrent. Note that exactly one of these will hold
since there is only one communicating class. This implies that tt;; = oo for each state j € E, and it
follows from Blackwell’s theorem applied to renewals for Markov chains that for any states i, j € E

1
hmP( n_ = 0.
neN Hjj
If there existed a stationary distribution = € A(E) in this case. For any step size n € N and states
i,j € E, we would then have
5= Y B <1
i€E

We can change limits and summation using dominated convergence theorem, to get for any j € E

Z ; hmP =0.
i€cE

This contradicts 7 being a stationary distribution, proving the first part of the theorem.

ii) We assume that all states are positive recurrent. From the theorem hypothesis, elementary renewal
theorem, and positive recurrence, we get

7rj—11mP —1/#//>0

Further, for any finite set A C E, we have
Z Z tjn> =1

JEA JEE

Taking limit » € N on both sides, we conclude that " jeaTj < 1 for all A finite. Taking limit with
respect to increasing sets A 1 E, we conclude,

Z 7w < 1.
JEE
Further, we can write for all A C E,
+1 _
P =Y PiPj> ) PiRij.
keE keA

Applying limit n € N on both sides, we get T; > Y4 M Py for all A finite. Hence, taking limits with
respect to increasing sets A T E, we get for all state j € E,

> Z By -
keE

Assuming that the inequality is strict for some state j € E, we can sum the inequalities over all states
J € E. Since, summands are non-negative we can exchange summation orders to get

L7> Y Y mPy=) M) Py=) T

JEE JEEkEE keE  JEE keE

This is a contradiction. Therefore, for any state j € E

T = Z ﬂkij.

keE



Defining normalized w; = ﬁ, we see that {w; : j € E} is a stationary distribution and so at least
one stationary distribution exists. If the initial distribution of this positive recurrent Markov chain is
a stationary distribution {A; : j € E'}, then for any finite subset A C E, we get

Aj=Pr{X,=j}=Y Pidi> Y PiA.

i€E i€A
As before, we take limit n € N, followed by limit of increasing subsets A 1" E, to obtain

A,j > Z 717/'2,,' =T;.
icE

To show A j < T, we use the fact that Pl’; < 1. Let A C E be a finite subset, then
= LB = et YR < YR+ Y
i€l icA iZA icA i¢A
Using our standard approach of taking limit n € N, followed by A 1 E, we obtain

2,/' < Zﬂjli =T;.

i€k
O

Corollary 2.3. An irreducible, aperiodic Markov chain defined on a finite state space E will be positive
recurrent.

Proof. Suppose that the Markov chain is not positive recurrent, then

lim P = 0.
neN Y

Interchanging limit and finite summation gives
0= Y timP" =1im ¥ P® = 1.

L lmPy = lim L P
This is a contradiction. Hence the above mentioned chain is positive recurrent. O
Corollary 2.4. For an irreducible and aperiodic Markov chain with stationary distribution T on count-
able state space E, we have

N . N

EiLi()=En()Xo=j]=_—, jeE.
J

Further, we can define the number of visits to state i during one renewal duration S () as

S1(J)
Ni(Si1() = Y, 1{X, =i}
k=1

Proposition 2.5. For an aperiodic and irreducible Markov chain X with stationary distribution T on
countable state space E, the mean number of visits to state i in one return to state j is given

E;N;(S1(j)) = %



Proof. Let Xy = j € E, then from renewal reward theorem for renewal sequence S(i) and definition of 7,

) Y H{X, =i} 1
limPi{X, =i} =1 =
nlenI\lI j{ l} nlenI\lI n Ei [T] (l)]

=T.
Result follows from rewriting of the above expression for renewal sequence S(j) as

nox, =it E;yOWiix, = E ;N (S1(j
lim P;{X, —l}—llm):k:1 X =1} = k 1 =i} _ == i 1(.]))
neN neN n E Sl( ) ]EjTl (])

= m,;E;Ni(S1(/))-

2.1 Ergodic theorem for Markov Chains

Proposition 2.6. Let {X,, : n € Ny} be an irreducible, aperiodic, and positive recurrent Markov chain on
countable state space E with stationary distribution m. Let f : E — R, such that ¥ ;cp | f(i)|7; < o, that
is f is integrable over E with respect to ©t. Then for any initial distribution of Xy,

lim — Z J(X Z 7 f (i) almost surely.

neNi’l iCE

Proof. Fix Xo =i € E. Let S(i) be sequence of successive instants at which state i is visited, with Sy (i) =

s
0. Forall p>0,letRy,1 1 =% " (”+] D f(X,) be the net reward earned at the end of cycle (p+ 1). Each

cycle forms a renewal. By the strong Markov property, these cycles are independent. At each of these
stopping times, Markov chain is in state i € E. Since E;S (i) = 1 /7;, we get from renewal reward theorem

n 51.0)
1imM Z )] = mE; Z Y )X = j}
n=1 n=1 jeE

Using dominated convergence theorem, and substituting the mean number of visits to state j during
successive return to state j, we can write

limM:mEiZf ZI{X =jt=m Y FO)EN;(Si1() =Y 7 f(j)

neN n J€E — = =



	Limit Theorems
	Positive and Null recurrence
	Ergodic theorem for Markov Chains


