
Lecture 13 : Convergence of Markov Chains

1 Mean time spent in the transient states
Consider a Markov chain X defined on a finite state space E with probability transition matrix P. Let
T ⊂ E be the set of transient states. We define a probability transition matrix Q for transient states as

Qi j = Pi j, i, j ∈ T.

All row sums of Q cannot equal 1. At least one row should not sum up to 1, else it contradicts the claim
that Q is a transition matrix for the set of transient states. Hence, I−Q is invertible. For i, j ∈ T , we
define fundamental matrix M such that

Mi j , Ei ∑
n∈N0

1{Xn= j} = ∑
n∈N0

Pn
i j.

Lemma 1.1. Fundamental matrix M for transient states of a Markov chain X can be expressed in terms
of its transition matrix Q as

M = (I−Q)−1.

Proof. We will show that M = I +QM. To this end, we re-write Mi j as

Mi j = 1{i= j}+ ∑
n∈N

∑
k∈E

Pi{Xn = j,X1 = k}= Ii j + ∑
k∈E

Pik ∑
n∈N0

Pn
k j = Ii j + ∑

k∈T
PikMk j + ∑

k/∈T
Pik ∑

n∈N0

Pn
k j.

Since T is a set of transient states, Pi j = 0 for i /∈ T and j ∈ T , the result follows.

First time to visit a transient state j ∈ T is a stopping time

τ j = inf{n ∈ N0 : Xn = j}.

The expected time to visit any transient state j ∈ T , starting from an initial transient state i ∈ T is

fi j , Ei ∑
m∈N0

1{τ j=m}.

Lemma 1.2. For all i,∈ T , we have fi j = Mi j/M j j.

Proof. From law of total probability, we can write Mi j as

Mi j = ∑
m∈N0

∑
n≥m

Pi{Xn = j,τ j = m}= ∑
m∈N0

Pi{τ j = m} ∑
n∈N0

P j{Xn = j}= fi jM j j.
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2 Total variation distance
Given two probability distributions p and q defined on a countable space E, their total variation distance
is defined as

dTV (p,q),
1
2
‖p−q‖1 .

Lemma 2.1. For a countable set E, and distributions p,q ∈ ∆(E), we have

dTV (p,q) = sup{p(S)−q(S) : S⊆ E}.

Proof. Let A = {i ∈ E : p(i)−q(i)≥ 0}. Then, we can write

dTV (p,q) =
1
2

(
∑
i∈A

p(i)−q(i)+∑
i/∈A

q(i)− p(i)

)
=

1
2
(p(A)− p(Ac)−q(A)+q(Ac)) = p(A)−q(A).

Let S⊆ E, then we have

p(S)−q(S)≤ p(S∩A)−q(S∩A)≤ p(A)−q(A) = dTV (p,q).

Hence, the result follows.

We say that a sequence of distributions ν(n) converges in total variation distance to a distribution
π ∈ ∆(E), if

lim
n∈N

dTV (ν(n),π) = lim
n∈N ∑

i∈E
|ν(n)i−πi|= 0.

Lemma 2.2 (ergodic theorem). Let X = {Xn ∈ E : n ∈ N0} be a stochastic process with the marginal
distribution of Xn denoted by ν(n) for each n ∈ N. If ν(n)→ π in total variation distance, then for all
bounded functions f : E→ R, we have

lim
n∈N

E[ f (Xn)] = ∑
i∈E

πi f (i).

Proof. Let supi∈E | f (i)| ≤K be a finite upper bound on chosen f . From the finiteness of this upper bound,
convergence in total variation, and triangular inequality, it follows

|E[ f (Xn)]−∑
i∈E

πi f (i)|= |∑
i∈E

f (i)(ν(n)i−πi)| ≤ KdTV (ν(n),π).

3 The coupling method
Two stochastic processes X ∈ EN and Y ∈ EN defined on the common probability space are said to
coupled, if there exists an a.s. finite random time τ such that for all n≥ τ , we have Xn =Yn a.s. Moreover,
τ is called a coupling time of the joint process (X ,Y ).

Theorem 3.1 (coupling inequality). Let τ be a coupling time for the coupled processes X and Y . At
each time n ∈ N, let Xn,Yn have marginal distributions pn,qn ∈ ∆(E) respectively. Then,

dTV (pn,qn)≤ Pr{τ > n}.
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Proof. Consider a finite subset E0 ⊆ E and A = {Xn ∈ E0},B = {Yn ∈ E0}, and C = {τ ≤ n}. Then, from
definition of coupling time, we have Xn = Yn a.s. on C. Hence, we can write

pn(E0)−qn(E0) = Pr(A\C)−Pr(B\C)≤ Pr{Xn ∈ E0,τ > n} ≤ Pr{τ > n}.

Variation distance is bounded based on the coupling time. One can bound even the convergence rate
by the large deviation of coupling time.

Theorem 3.2 (convergence in total variation of Markov chains). Let X = {Xn ∈ E : n ∈ N0} be a
homogenous ergodic Markov chain with transition probability matrix P and stationary distribution π ∈
∆(E). Then, for any initial distribution ν(0), the distribution ν(n) at time n converges in total variation
to the stationary distribution.

Proof. Let X and Y be two independent ergodic Markov chains with the transition matrix P and stationary
distribution π . We assume the initial distribution of X and Y to be δi and π respectively. We construct the
product Markov chain Zn = (Xn,Yn) for all n ∈ N0. Then, {Zn : n ∈ N0} has transition probabilities,

Pr{Zn = (k, `)|Zn−1 = (i, j)}= PikPj`.

It is clear that the chain Z is irreducible, aperiodic, and positive recurrent. Further, we notice that
πZ(i, j) = πiπ j is a stationary distribution, since

πZ(k, `) = πkπ` = ∑
i∈E

πiPi` ∑
j∈E

π jPj` = ∑
(i, j)∈E×E

πZ(i, j)PikPj`.

Next, we define a stopping time τ for the process Z, as

τ = inf{n ∈ N0 : Xn = Yn}= inf{n ∈ N0 : Zn ∈ {(i, i) : i ∈ E}}.

Since Z is an irreducible and recurrent Markov chain, the probability f(k,`),(i,i) of reaching diagonal state
(i, i) in finite time from any state (k, `) is unity. Hence, for the stopping time τ for ergodic Markov chain
Z, we have Pr{τ < ∞}= 1. Consider a process W defined for each n ∈ N0 as

Wn = Xn1{n≤τ}+Yn1{n>τ}.

Clearly, W is a homogenous Markov chain with transition matrix P and initial state i. That is, it inherits
all the statistical properties of chain X . In particular, the distribution of W at any time n is ν(n). Further,
since τ is a coupling time for stationary process Y and its coupled process W , it follows from coupling
inequality

1
2 ∑

i∈E
|Pr{Wn = i}−Pr{Yn = i}|= 1

2 ∑
i∈E
|Pr{Xn = i}−πi|= dTV (ν(n),π)≤ Pr{τ > n}.

Let X and Y be two binomial distributions with parameters (n, p) and (n,q) respectively, for
p > q. We are interested in finding the relation between Pr{X > k} and Pr{Y > k} for all k ∈ E.

Consider n Bernoulli random variables, Z1,Z2, . . . ,Zn with probability Pr{Zi = 1}= p. Consider
random variables U1,U2, . . . ,Un each Bernoulli with probability q/p and independent of random
variables Z1,Z2, . . . ,Zn, and defining for all i ∈ [n]

Wi =UiZi.

Hence, we see that Wi ≤ Zi is Bernoulli with parameter EWi = q = Pr{Wi = 1}. Observing that
Y = ∑i Wi ≤ ∑i Zi = X , it follows that Pr{Y > k} ≤ Pr{X > k}.
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