Lecture 15 : Continuous Time Markov Chains

1 Markov Process

A stochastic process $\{X(t) \in E, t \geq 0\}$ assuming values in a state space *E* and indexed by positive reals is a Markov process if the distribution of the future states conditioned on the present, is independent of the past. That is,

$$
\Pr\{X(t+s)=j|X(u),\ u\in[0,s]\}=\Pr\{X(t+s)=j|X(s)\}\text{, for all }s,t\geqslant 0\text{ and }i,j\in E.
$$

A Markov process with countable state space is referred to as continuous time Markov chain (CTMC). We define the **transition probability** from state *i* at time *s* to state *j* at time $s + t$ as

$$
P_{ij}(s, s+t) = \Pr\{X(s+t) = j | X(s) = i\}.
$$

The Markov process has **homogeneous** transitions for all $i, j \in E$, $s, t \ge 0$, if

$$
P_{ij}(s,s+t) = P_{ij}(0,t),
$$

and we denote the **transition probability matrix** at time *t* by $P(t) = \{P_{ij}(t) = P_{ij}(0,t) : i, j \in E\}$. We will mainly be interested in continuous time Markov processes with homogeneous jump transition probabilities. A distribution π is an equilibrium distribution of a Markov process if

$$
\pi P(t) = \pi, \ \forall t \geq 0.
$$

1.1 Strong Markov property

For a process $\{X(t), t \geq 0\}$, if we denote the σ -algebra generated by realization of the process till time *t* as $\mathcal{F}_t = \sigma(\{X(u) : u \le t\})$, then a random variable τ is a **stopping time** if for each $t \in \mathbb{R}_+$,

$$
\{\tau \leq t\} \in \mathcal{F}_t
$$

.

That is, a random variable τ is a stopping time if the event $\{\tau \leq t\}$ can be determined completely by the collection $\{X(u): u \leq t\}$. A stochastic process *X* has **strong Markov property** if for any almost surely finite stopping time τ ,

$$
\Pr\{X(\tau+s)=j|X(u),u\leq\tau\}=\Pr\{X(\tau+s)=j|X(\tau)\}.
$$

Lemma 1.1. *A homogeneous continuous time Markov chain X has the strong Markov property.*

Proof. Let τ be an almost surely finite stopping time with conditional distribution F on the collection of events $\{X(u) : u \leq s\}$. Then,

$$
\Pr\{X(\tau+s)=j|X(u),u\leq \tau\}=\int_0^\infty dF(t)\Pr\{X(t+s)=j|X(u),u\leq t,\tau=t\}=\Pr\{X(\tau+s)=j|X(\tau)\}.
$$

Since the CTMC is homogeneous and τ is almost surely finite stopping time, it is clear that

$$
Pr{X(\tau + s) = j | X(\tau) = i} = P_{ij}(\tau, \tau + s) = P_{ij}(0, s).
$$

1.2 Jump and sojourn times

For any stochastic process on countable state space *E* that is right continuous with left limits (rcll), we wish to know following probabilities

$$
\Pr\{X(s+t) = j | X(u), \ u \in [0, s]\}, \ s, t \ge 0.
$$

To this end, we define the sojourn time in any state, the jump times, and the jump transition probabilities. First, we define a stopping time for any stochastic process

$$
\tau_t = \inf\{s > t : X(s) \neq X(t)\}.
$$

For a homogeneous CTMC *X*, the distribution of $\tau_t - t$ only depends on *X*(*t*) and doesn't depend on time *t*. Hence, we can define the following conditional distribution

$$
F_i(u) \triangleq \Pr\{\tau_s - s \leq u | X(s) = i\}.
$$

Lemma 1.2. *For a homogeneous CTMC X, there exists some* $v_i > 0$ *, such that*

$$
\Pr\{\tau_s - s > t | X(s) = i\} = e^{-tV_i}.
$$

Proof. Using Markov property and the fact that τ_s is a stopping time, we can write

$$
\begin{aligned} \bar{F}_i(u+v) &= \Pr\{\tau_s - s > u + v|X(s) = i, \mathcal{F}_s\} = \Pr\{\tau_s - s > u + v|\tau_s - s > u, X(s) = i, \mathcal{F}_s\} \Pr\{\tau_s - s > u|X(s) = i, \mathcal{F}_s\} \\ &= \Pr\{\tau_{s+u} - (s+u) > v|X(s+u) = i, \tau_s > u + s, \mathcal{F}_{s+u}\} \Pr\{\tau_s - s > u|X(s) = i, \mathcal{F}_s\} = \bar{F}_i(v)\bar{F}_i(u). \end{aligned}
$$

The only continuous function $\bar{F}_i \in [0,1]$ that satisfies semigroup property is an exponential function with a negative exponent. \Box

The jump times of a stochastic process $\{X(t), t \ge 0\}$ are defined as

$$
S_0 = 0, \t S_n \triangleq \inf\{t > S_{n-1} : X(t) \neq X(S_{n-1})\}.
$$

The sojourn time of this process staying in state $X(S_{n-1})$ is

$$
T_n \triangleq (S_n - S_{n-1}).
$$

Lemma 1.3. *Jump times* $\{S_n : n \in \mathbb{N}\}$ *are stopping times with respect to the process* $\{X(t) : t \ge 0\}$ *. Proof.* It is clear that ${S_n < t}$ is completely determined by the collection ${X(u) : u \leq t}$. \Box

Lemma 1.4. *For a homogeneous CTMC, each sojourn time Tⁿ is a continuous memoryless random variable, and the sequence of sojourn times* $\{T_n : n \in \mathbb{N}\}\$ *are independent.*

Proof. We observe that $S_n = \tau_{S_{n-1}}$, and hence the conditional distribution of T_n given $\mathcal{F}_{S_{n-1}}$ is

$$
\Pr\{T_n > y | \mathcal{F}_{S_{n-1}}\} = \exp(-yv_{X(S_{n-1})}) = \bar{F}_{X(S_{n-1})}(y), y \ge 0.
$$

For independence of sojourn times, we show that the $(n+1)$ th sojourn time is independent of *n*th jump time S_n . We can write the joint distribution as a conditional expectation

$$
\Pr\{T_n > y, S_{n-1} \le x | X(S_{n-1})\} = \mathbb{E}[\mathbb{E}[1\{\tau_{S_{n-1}} > S_{n-1} + y\}1\{S_{n-1} \le x\}|\mathcal{F}_{S_{n-1}}]|X(S_{n-1})].
$$

Using strong Markov property of homogeneous CTMC *X*, we can write the right hand side as

$$
\mathbb{E}[\bar{F}_{X(S_{n-1})}1\{S_{n-1}\leq x\}|X(S_{n-1})]=\bar{F}_{X(S_{n-1})}\Pr\{S_{n-1}\leq x\}.
$$

 \Box

Corollary 1.5. *If* $X(S_n) = i$, then the random variable T_{n+1} has same distribution as the exponential *random variable* τ*ⁱ with rate* ν*ⁱ .*

Inverse of mean sojourn time in state *i* is called the **transition rate** out of state *i* denote by v_i . and typically $v_i < \infty$. If $v_i = \infty$, we call the state to be **instantaneous**.

1.3 Jump process

The **jump process** is a discrete time process $\{X^J(n) = X(S_n) : n \in \mathbb{N}_0\}$ derived from the continuous time stochastic process $\{X(t): t \geq 0\}$ by sampling at jump times. The corresponding **jump transition** probabilities are defined by

$$
p_{ij}(S_n) \triangleq Pr\{X(S_n) = j | X(S_{n-1}) = i\}, i, j \in E.
$$

Lemma 1.6. *For any right continuous left limits stochastic process, the sum of jump transition probabilities* $\sum_{i \neq i} p_{ij}(S_n) = 1$ *for all* $X(S_{n-1}) = i \in E$.

Proof. It follows from law of total probability.

Let *N*(*t*) be the counting process associated with jump times sequence $\{S_n : n \in \mathbb{N}\}\$. That is,

$$
N(t) = \sum_{n \in \mathbb{N}} 1\{S_n \le t\}.
$$

Proposition 1.7. *For a homogeneous CTMC such that* $\inf_{i \in E} v_i \ge v > 0$ *, then the jump times are almost surely finite stopping times.*

Proof. We obsevre that the jump times are sum of independent exponential random variables. Further by coupling, we can have a sequence of *iid* random variables $\{\overline{T}_n : n \in \mathbb{N}\}$, such that $T_n \leq \overline{T}_n$ and $\mathbb{E}(\overline{T}_n = 1/\nu)$ for each $n \in \mathbb{N}$. Hence, we have

$$
S_n = \sum_{i=1}^n T_i \le \sum_{i=1}^n \overline{T}_i \triangleq \overline{S}_n.
$$

Result follows since \overline{S}_n is the *n*th arrival instant of a Poisson process with rate *v*.

 \Box

 \Box

Lemma 1.8. *For a homogeneous CTMC, the jump probability from state* $X(S_{n-1})$ *to state* $X(S_n)$ *depend solely on* $X(S_{n-1})$ *and are independent of jump instants.*

Proof. We can re-write the jump probability as

$$
Pr{X(S_n) = j | X(S_{n-1}) = i} = P_{ij}(S_{n-1}, S_n) = P_{ij}(0, T_n).
$$

For $T_n > x$, then we can write

$$
\Pr\{T_n > x, X(S_n) = j | X(S_{n-1}) = i\} = \Pr\{X(S_n) = j | T_n > x, X(S_{n-1}) = i\} \Pr\{T_n > x | X(S_{n-1}) = i\}
$$

= $P_{ij}(S_{n-1} + x, S_n) \Pr\{\tau_{X(S_{n-1})} > S_{n-1} + x\} = P_{ij}(0, T_n - x) \bar{F}_i(x).$

Similarly, for $T_n \leq x$, we can write

$$
\Pr\{T_n \le x, X(S_n) = j | X(S_{n-1}) = i\} = \int_0^x \Pr\{X(S_n) = j | T_n = u, X(S_{n-1}) = i\} dF_i(u) = P_{ij}(0,0)F_i(x).
$$

Hence for any $x \in \mathbb{R}_+$, we can write

$$
P_{ij}(T_n) = P_{ij}(T_n - x)\bar{F}_i(x) + P_{ij}(0)F_i(x).
$$

Result follows, since the only solution to this equation is $P_{ij}(T_n) = P_{ij}(0)$.

Corollary 1.9. For a homogeneous CTMC, the transition probabilities p_i and sojourn times τ_i are inde*pendent.*

Corollary 1.10. *The jump process is a homogeneous Markov chain with countable state space E.*

 \Box

1.4 Alternative construction of CTMC

Proposition 1.11. *A stochastic process* $\{X(t) \in E, t \geq 0\}$ *is a CTMC iff*

a. sojourn times are independent and exponentially distributed with rate v_i *where* $X(S_{n-1}) = i$ *, and*

b. jump transition probabilities $p_{ij}(S_n)$ *<i>are independent of jump times* S_n *, such that* $\sum_{i \neq j} p_{ij} = 1$ *.*

Proof. Necessity of two conditions follows from Lemma [1.4](#page-1-0) and [1.8.](#page-2-0) For sufficiency, we assume both conditions and show that Markov property holds and the transition probability is homogeneous. Using jump time independence of jump probabilities, we can write

$$
\Pr\{X(t+s)=j|X(s)=i,\mathcal{F}_s\}=\sum_{k=0}^{\infty}\Pr\{X(t+s)=j,N(s+t)-N(s)=k|N(s),X(s)=i,\mathcal{F}_s\}.
$$

Since sojourn times are memoryless and depend only on the previous state, it follows that $N(t + s) - N(s)$ is independent of *N*(*s*) and

$$
\Pr\{X(t+s)=j, N(s+t)-N(s)=k|N(s), X(s)=i, \mathcal{F}_s\}=\Pr\{X(t+s)=j, N(s+t)-N(s)=k|X(s)=i\}.
$$

This shows that the *X* is a Markov process.

The distribution of $N(s+t) - N(s)$ conditioned on $X(s) = i$ has the same distribution as $N(t)$ conditioned on $X(0) = i$. Further, the jump probabilities are independent of jump times. Together, it follows that

$$
Pr{X(t+s) = j, N(s+t) - N(s) = k|X(s) = i} = Pr{X(t) = j, N(t) - N(0) = k|X(0) = i}.
$$

Therefore, it follows that *X* is a homogeneous Markov process.

$$
\Box
$$

A Exponential random variables

Lemma A.1. *Let X be an exponential random variable, and S be any positive random variable, independent of X. Then,*

$$
\Pr\{X > S + u | X > S\} = \Pr\{X > u\}.
$$

Proof. Let the distribution of *S* be *F*. Then, using memoryless property of exponential random variable, we can write

$$
\Pr\{X > S + u | X > S\} = \int_0^\infty dF(v) \Pr\{X > u + v | X > v\} = \Pr\{X > u\} \int_0^\infty dF(v) = \Pr\{X > u\}.
$$