
Lecture 16 : Evolution of Markov Processes

1 Regularity and Stationarity
A CTMC is called regular if for all finite t ∈ R+, number of jumps N(t) is almost surely finite. That is,
for all t ∈ R+

Pr{N(t)< ∞}= 1.

Lemma 1.1. A homogeneous CTMC is regular if supi∈E νi < ν < ∞.

Proof. By coupling, we can have a sequence of iid random variables {T n : n ∈N}, such that T n ≤ Tn and
EXn = ν for each n ∈ N. Let m(t) be the associated renewal function with the sequence T , then we can
write

Pr{N(t)< ∞}= ∑
n∈N0

Pr{Sn ≥ t}= 1+m(t)≤ 1+m(t).

Consider the following example of a non-regular CTMC, where for all i ∈ N

pi,i+1 = 1,νi = i2.

Clearly, supi∈E νi = ∞, and hence it is not regular.

1.1 Properties of transition matrix
For each t, we have the transition matrix P(t).

Lemma 1.2 (continuity). Transition matrix P(t) for a homogeneous CTMC X is a continuous function
of time t ∈ R+, such that

lim
t↓0

P(t) = I.

Proof. It follows from continuity of probability functions and alternate characterization of homogeneous
CTMC.

Lemma 1.3 (semigroup property). Transition matrix P(t) satisfies the semigroup property

P(s+ t) = P(s)P(t).

Since each entry of P(t) is a probability, this leads to characterization of P(t) completely.
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Proof. From homogeneity of Markov chains, we can write the (i, j)th entry of P(s+ t) as

Pi j(0,s+ t) = ∑
k∈E

Pik(0,s)Pk j(s,s+ t) = ∑
k∈E

Pik(0,s)Pk j(0, t) = [P(s)P(t)]i j.

For a homogeneous CTMC with transition matrix P(t), the generator matrix Q ∈ RE×E is defined
as the following limit when it exists

Q , lim
t↓0

P(t)− I
t

.

Theorem 1.4. For a homogeneous CTMC, the generator matrix exists and is defined in terms of sojourn
time rates {νi : i ∈ E}, and jump transition matrix p = {pi j : i, j ∈ E} as

Qii =−νi, Qi j = νi pi j.

Proof. We can expand the (i, j)th entry of transition matrix in terms of disjoint events {N(t) = n} as

Pi j(t) = Pr{X(t) = j|X(0) = i}= ∑
n∈N0

Pr{X(t) = j,N(t) = n|X(0) = i}.

We can write the upper and lower bound as

1

∑
n=0

Pr{X(t) = j,N(t) = n|X(0) = i} ≤ Pi j(t)≤
1

∑
n=0

Pr{X(t) = j,N(t) = n|X(0) = i}+Pr{N(t)≥ 2}.

For t > 0, we can compute for j 6= i ∈ E

Pr{X(t) = i,N(t) = 0|X(0) = i}= e−νit , Pr{X(t) = i,N(t) = 1|X(0) = i}= 0,

Pr{X(t) = j,N(t) = 0|X(0) = i}= 0, Pr{X(t) = j,N(t) = 1|X(0) = i}= pi j

∫ t

0
νie−ν j(t−u)e−νiudu.

Since {N(t)≥ 2} is of order o(t) for small t, we can write

Pi j(t)− Ii j

t
=−

(
1− e−νit

t

)
Ii j +νi pi j

(e−ν j − e−νit)

(νi−ν j)t
(1− Ii j)+o(t).

Taking limit as t ↓ 0, we get the result.

Corollary 1.5. For each state i ∈ E, the generator matrix Q ∈ RE×E for a homogeneous CTMC satisfies

0≤−Qii < ∞, Qi j ≥ 0, ∑
j∈E

Qi j = 0.

1.2 Chapman Kolmogorov equations
Theorem 1.6 (backward equation). For a homogeneous CTMC with transition matrix P(t) and gener-
ator matrix Q, we have

dP(t)
dt

= QP(t), t > 0.
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Proof. Using semigroup property of transition probability matrix P(t) for a homogeneous CTMC, we
can write

P(t +h)−P(t)
h

=
(P(h)− I)

h
P(t).

Taking limits h ↓ 0 and exchanging limits and summation, we get

dPi j(t)
dt

= ∑
k 6=i

QikPk j(t)−νiPi j(t).

Now the exchange of limit and summation has to be justified. For any finite subset F ⊂ E, we have

liminf
h↓0 ∑

k 6=i

Pik(h)
h

Pk j(t)≥ ∑
k∈F\{i}

liminf
h↓0

Pik(h)
h

Pk j(t) = ∑
k∈F\{i}

QikPk j(t).

Since, above is true for any finite set F ⊂ E, taking supremum over increasing sets F , we get the lower
bound. For the upper bound, we observe for any finite subset F ⊆ E

limsup
h↓0

∑
k 6=i

Pik(h)
h

Pk j(t)≤ limsup
h↓0

(
∑

k∈F\{i}

Pik(h)
h

Pk j(t)+ ∑
k/∈F\{i}

Pik(h)
h

)

= limsup
h↓0

(
∑

k∈F\{i}

Pik(h)
h

Pk j(t)+
1−Pii(h)

h
− ∑

k∈F\{i}

Pik(h)
h

)
= ∑

k∈F\{i}
QikPk j(t)+νi− ∑

k∈F\{i}
Qik.

Theorem 1.7 (forward equation). For a homogeneous CTMC with transition matrix P(t) and generator
matrix Q, we have

dP(t)
dt

= P(t)Q.

Proof. Using semigroup property of transition probability matrix P(t) for a homogeneous CTMC, we
can write

P(t +h)−P(t)
h

= P(t)
(P(h)− I)

h
.

Taking limits h ↓ 0, we get

dPi j(t)
dt

= ∑
k 6= j

Pik(t)Qk j−ν jPi j(t).

By taking limiting value for increasing sequence of finite sets F ⊆ E, we obtain the lower bound

∑
k 6= j

Pik(t)Qk j ≤ liminf
h↓0 ∑

k 6= j
Pik(t)

Pk j(h)
h

.

To obtain the upper bound, we observe for any finite subset F ⊆ E,

limsup
h↓0

∑
k 6=i

Pik(t)
Pk j(h)

h
≤ limsup

h↓0

(
∑

k∈F\{ j}
Pik(t)

Pk j(h)
h

+
1−Pj j(h)

h
− ∑

k∈F\{ j}

Pk j(h)
h

)
.
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Corollary 1.8. For a homogeneous CTMC with finite state space E, the transition matrix P(t) and gen-
erator matrix Q, we have

P(t) = etQ = I + ∑
n∈N

tnQn

n!
, t > 0.

Corollary 1.9. For a homogeneous CTMC with finite state space E, the transition matrix P(t) and gen-
erator matrix Q, the stationary distribution satisfies

πQ = 0, πi > 0, ∑
i∈E

πi = 1.

Proof. We can define probability of being in state j ∈ E at time t by

π j(t) = Pr{X(t) = j}.

By Markov property, we have π(t) = {π j(t) : j ∈ E} by

π(t) = π(0)P(t).

For a stationary distribution, we have π = πP(t) and taking derivatives on both sides, we get the result.

1.3 Transition graph
The directed transition graph consists of vertex set E and the edges being

{(i, j) : pi j > 0, i 6= j}.

The weights of the directed edges are given by wi j = νi pi j.

A Generator matrix
A generator matrix denoted by Q ∈ RE×E is defined in terms of sojourn times {νi, i ∈ E} and jump
transition probabilities {pi j, i 6= j ∈ E} of a CTMC as

i qii =−νi,

ii qi j = νi pi j.

Lemma A.1. A matrix Q is a generator matrix for a CTMC iff for each i ∈ I,

i 0≤−qii < ∞,

ii qi j ≥ 0,

iii ∑ j∈I qi j = 0.

From the Q matrix, we can construct the whole CTMC. In DTMC, we had the result P(n)(i, j) =
(Pn)i, j. We can generalize this notion in the case of CTMC as follows: P = eQ , ∑k∈N0

Qk

k! . Observe that
eQ1+Q2 = eQ1eQ2 , enQ = (eQ)n = Pn.
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Theorem A.2. Let Q be a finite sized matrix. Let P(t) = etQ. Then {P(t), t ≥ 0} has the following
properties:

1. P(s+ t) = P(s)P(t), ∀s, t (semi group property).

2. P(t), t ≥ 0 is the unique solution to the forward equation, dP(t)
dt = P(t)Q, P(0) = I.

3. And the backward equation dP(t)
dt = QP(t), P(0) = I.

4. For all k ∈ N, dkP(t)
dk(t) |t=0 = Qk.

Proof. dM(t)e−tQ

dt = 0, M(t)e−tQ is constant. M(t) is any matrix satisfying the forward equation.

Theorem A.3. A finite matrix Q is a generator matrix for a CTMC iff P(t) = etQ is a stochastic matrix
for all t ≥ 0.

Proof. P(t) = I + tQ + O(t2) ( f (t) = O(t) ⇒ f (t)
t ≤ c, for small t, c < ∞ ). qi j ≥ 0 if and only if

Pi j(t)≥ 0, ∀i 6= j and t ≥ 0 sufficiently small. P(t) = P( t
n )

n. Note that if Q has zero row sums, Qn also
has zero row sums.

∑
j
[Qn]i j = ∑

j
∑
k
[Qn−1]ikQk j = ∑

j
∑
k

Qk j[Qn−1]ik = 0.

∑
j

Pi j(t) = 1+ ∑
n∈N

tn

n! ∑
j
[Qn]i j = 1+0 = 1.

Conversely ∑ j Pi j(t) = 1, ∀t ≥ 0, then ∑ j Qi j =
dPi j(t)

dt = 0.

5


	Regularity and Stationarity
	Properties of transition matrix
	Chapman Kolmogorov equations
	Transition graph

	Generator matrix

