Lecture 16 : Evolution of Markov Processes

1 Regularity and Stationarity

A CTMC is called regular if for all finite $t \in \mathbb{R}_{+}$, number of jumps $N(t)$ is almost surely finite. That is, for all $t \in \mathbb{R}_{+}$

$$
\operatorname{Pr}\{N(t)<\infty\}=1 .
$$

Lemma 1.1. A homogeneous CTMC is regular if $\sup _{i \in E} v_{i}<v<\infty$.
Proof. By coupling, we can have a sequence of iid random variables $\left\{\underline{T}_{n}: n \in \mathbb{N}\right\}$, such that $\underline{T}_{n} \leq T_{n}$ and $\mathbb{E} X_{n}=v$ for each $n \in \mathbb{N}$. Let $\underline{m}(t)$ be the associated renewal function with the sequence \underline{T}, then we can write

$$
\operatorname{Pr}\{N(t)<\infty\}=\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\left\{S_{n} \geq t\right\}=1+m(t) \leq 1+\underline{m}(t) .
$$

Consider the following example of a non-regular CTMC, where for all $i \in \mathbb{N}$

$$
p_{i, i+1}=1, v_{i}=i^{2} .
$$

Clearly, $\sup _{i \in E} v_{i}=\infty$, and hence it is not regular.

1.1 Properties of transition matrix

For each t, we have the transition matrix $P(t)$.
Lemma 1.2 (continuity). Transition matrix $P(t)$ for a homogeneous CTMC X is a continuous function of time $t \in \mathbb{R}_{+}$, such that

$$
\lim _{t \downarrow 0} P(t)=I .
$$

Proof. It follows from continuity of probability functions and alternate characterization of homogeneous CTMC.

Lemma 1.3 (semigroup property). Transition matrix $P(t)$ satisfies the semigroup property

$$
P(s+t)=P(s) P(t)
$$

Since each entry of $P(t)$ is a probability, this leads to characterization of $P(t)$ completely.

Proof. From homogeneity of Markov chains, we can write the (i, j) th entry of $P(s+t)$ as

$$
P_{i j}(0, s+t)=\sum_{k \in E} P_{i k}(0, s) P_{k j}(s, s+t)=\sum_{k \in E} P_{i k}(0, s) P_{k j}(0, t)=[P(s) P(t)]_{i j}
$$

For a homogeneous CTMC with transition matrix $P(t)$, the generator matrix $Q \in \mathbb{R}^{E \times E}$ is defined as the following limit when it exists

$$
Q \triangleq \lim _{t \downarrow 0} \frac{P(t)-I}{t}
$$

Theorem 1.4. For a homogeneous CTMC, the generator matrix exists and is defined in terms of sojourn time rates $\left\{v_{i}: i \in E\right\}$, and jump transition matrix $p=\left\{p_{i j}: i, j \in E\right\}$ as

$$
Q_{i i}=-v_{i}, \quad \quad Q_{i j}=v_{i} p_{i j}
$$

Proof. We can expand the (i, j) th entry of transition matrix in terms of disjoint events $\{N(t)=n\}$ as

$$
P_{i j}(t)=\operatorname{Pr}\{X(t)=j \mid X(0)=i\}=\sum_{n \in \mathbb{N}_{0}} \operatorname{Pr}\{X(t)=j, N(t)=n \mid X(0)=i\} .
$$

We can write the upper and lower bound as

$$
\sum_{n=0}^{1} \operatorname{Pr}\{X(t)=j, N(t)=n \mid X(0)=i\} \leq P_{i j}(t) \leq \sum_{n=0}^{1} \operatorname{Pr}\{X(t)=j, N(t)=n \mid X(0)=i\}+\operatorname{Pr}\{N(t) \geq 2\}
$$

For $t>0$, we can compute for $j \neq i \in E$
$\operatorname{Pr}\{X(t)=i, N(t)=0 \mid X(0)=i\}=e^{-v_{i} t}, \quad \operatorname{Pr}\{X(t)=i, N(t)=1 \mid X(0)=i\}=0$,
$\operatorname{Pr}\{X(t)=j, N(t)=0 \mid X(0)=i\}=0, \quad \operatorname{Pr}\{X(t)=j, N(t)=1 \mid X(0)=i\}=p_{i j} \int_{0}^{t} v_{i} e^{-v_{j}(t-u)} e^{-v_{i} u} d u$.
Since $\{N(t) \geq 2\}$ is of order $o(t)$ for small t, we can write

$$
\frac{P_{i j}(t)-I_{i j}}{t}=-\left(\frac{1-e^{-v_{i} t}}{t}\right) I_{i j}+v_{i} p_{i j} \frac{\left(e^{-v_{j}}-e^{-v_{i} t}\right)}{\left(v_{i}-v_{j}\right) t}\left(1-I_{i j}\right)+o(t)
$$

Taking limit as $t \downarrow 0$, we get the result.
Corollary 1.5. For each state $i \in E$, the generator matrix $Q \in \mathbb{R}^{E \times E}$ for a homogeneous CTMC satisfies

$$
0 \leq-Q_{i i}<\infty, \quad Q_{i j} \geq 0, \quad \sum_{j \in E} Q_{i j}=0
$$

1.2 Chapman Kolmogorov equations

Theorem 1.6 (backward equation). For a homogeneous CTMC with transition matrix $P(t)$ and generator matrix Q, we have

$$
\frac{d P(t)}{d t}=Q P(t), t \geqslant 0
$$

Proof. Using semigroup property of transition probability matrix $P(t)$ for a homogeneous CTMC, we can write

$$
\frac{P(t+h)-P(t)}{h}=\frac{(P(h)-I)}{h} P(t) .
$$

Taking limits $h \downarrow 0$ and exchanging limits and summation, we get

$$
\frac{d P_{i j}(t)}{d t}=\sum_{k \neq i} Q_{i k} P_{k j}(t)-v_{i} P_{i j}(t)
$$

Now the exchange of limit and summation has to be justified. For any finite subset $F \subset E$, we have

$$
\underset{h \downarrow 0}{\liminf } \sum_{k \neq i} \frac{P_{i k}(h)}{h} P_{k j}(t) \geq \sum_{k \in F \backslash\{i\}} \liminf _{h \downarrow 0} \frac{P_{i k}(h)}{h} P_{k j}(t)=\sum_{k \in F \backslash\{i\}} Q_{i k} P_{k j}(t)
$$

Since, above is true for any finite set $F \subset E$, taking supremum over increasing sets F, we get the lower bound. For the upper bound, we observe for any finite subset $F \subseteq E$

$$
\begin{aligned}
\limsup _{h \downarrow 0} \sum_{k \neq i} \frac{P_{i k}(h)}{h} P_{k j}(t) & \leq \limsup _{h \downarrow 0}\left(\sum_{k \in F \backslash\{i\}} \frac{P_{i k}(h)}{h} P_{k j}(t)+\sum_{k \notin F \backslash\{i\}} \frac{P_{i k}(h)}{h}\right) \\
& =\limsup _{h \downarrow 0}\left(\sum_{k \in F \backslash\{i\}} \frac{P_{i k}(h)}{h} P_{k j}(t)+\frac{1-P_{i i}(h)}{h}-\sum_{k \in F \backslash\{i\}} \frac{P_{i k}(h)}{h}\right) \\
& =\sum_{k \in F \backslash\{i\}} Q_{i k} P_{k j}(t)+v_{i}-\sum_{k \in F \backslash\{i\}} Q_{i k} .
\end{aligned}
$$

Theorem 1.7 (forward equation). For a homogeneous CTMC with transition matrix $P(t)$ and generator matrix Q, we have

$$
\frac{d P(t)}{d t}=P(t) Q
$$

Proof. Using semigroup property of transition probability matrix $P(t)$ for a homogeneous CTMC, we can write

$$
\frac{P(t+h)-P(t)}{h}=P(t) \frac{(P(h)-I)}{h}
$$

Taking limits $h \downarrow 0$, we get

$$
\frac{d P_{i j}(t)}{d t}=\sum_{k \neq j} P_{i k}(t) Q_{k j}-v_{j} P_{i j}(t)
$$

By taking limiting value for increasing sequence of finite sets $F \subseteq E$, we obtain the lower bound

$$
\sum_{k \neq j} P_{i k}(t) Q_{k j} \leq \liminf \sum_{h \downarrow 0} P_{k \neq j}(t) \frac{P_{k j}(h)}{h}
$$

To obtain the upper bound, we observe for any finite subset $F \subseteq E$,

$$
\limsup \sum_{h \downarrow 0} P_{i k}(t) \frac{P_{k j}(h)}{h} \leq \limsup _{h \downarrow 0}\left(\sum_{k \in F \backslash\{j\}} P_{i k}(t) \frac{P_{k j}(h)}{h}+\frac{1-P_{j j}(h)}{h}-\sum_{k \in F \backslash\{j\}} \frac{P_{k j}(h)}{h}\right) .
$$

Corollary 1.8. For a homogeneous CTMC with finite state space E, the transition matrix $P(t)$ and generator matrix Q, we have

$$
P(t)=e^{t Q}=I+\sum_{n \in \mathbb{N}} \frac{t^{n} Q^{n}}{n!}, t \geqslant 0
$$

Corollary 1.9. For a homogeneous CTMC with finite state space E, the transition matrix $P(t)$ and generator matrix Q, the stationary distribution satisfies

$$
\pi Q=0, \quad \pi_{i}>0, \quad \sum_{i \in E} \pi_{i}=1
$$

Proof. We can define probability of being in state $j \in E$ at time t by

$$
\pi_{j}(t)=\operatorname{Pr}\{X(t)=j\}
$$

By Markov property, we have $\pi(t)=\left\{\pi_{j}(t): j \in E\right\}$ by

$$
\pi(t)=\pi(0) P(t)
$$

For a stationary distribution, we have $\pi=\pi P(t)$ and taking derivatives on both sides, we get the result.

1.3 Transition graph

The directed transition graph consists of vertex set E and the edges being

$$
\left\{(i, j): p_{i j}>0, i \neq j\right\}
$$

The weights of the directed edges are given by $w_{i j}=v_{i} p_{i j}$.

A Generator matrix

A generator matrix denoted by $Q \in \mathbb{R}^{E \times E}$ is defined in terms of sojourn times $\left\{v_{i}, i \in E\right\}$ and jump transition probabilities $\left\{p_{i j}, i \neq j \in E\right\}$ of a CTMC as
i. $q_{i i}=-v_{i}$,
ii_ $q_{i j}=v_{i} p_{i j}$.
Lemma A.1. A matrix Q is a generator matrix for a CTMC iff for each $i \in I$,
$i_{-} 0 \leq-q_{i i}<\infty$,
$i i-q_{i j} \geq 0$,
$i i i{ }_{-} \sum_{j \in I} q_{i j}=0$.
From the Q matrix, we can construct the whole CTMC. In DTMC, we had the result $P^{(n)}(i, j)=$ $\left(P^{n}\right)_{i, j}$. We can generalize this notion in the case of CTMC as follows: $P=e^{Q} \triangleq \sum_{k \in \mathbb{N}_{0}} \frac{Q^{k}}{k!}$. Observe that $e^{Q_{1}+Q_{2}}=e^{Q_{1}} e^{Q_{2}}, e^{n Q}=\left(e^{Q}\right)^{n}=P^{n}$.

Theorem A.2. Let Q be a finite sized matrix. Let $P(t)=e^{t Q}$. Then $\{P(t), t \geq 0\}$ has the following properties:

1. $P(s+t)=P(s) P(t), \forall s, t$ (semi group property).
2. $P(t), t \geq 0$ is the unique solution to the forward equation, $\frac{d P(t)}{d t}=P(t) Q, P(0)=I$.
3. And the backward equation $\frac{d P(t)}{d t}=Q P(t), P(0)=I$.
4. For all $k \in \mathbb{N},\left.\frac{d^{k} P(t)}{d^{k}(t)}\right|_{t=0}=Q^{k}$.

Proof. $\frac{d M(t) e^{-t Q}}{d t}=0, M(t) e^{-t Q}$ is constant. $M(t)$ is any matrix satisfying the forward equation.
Theorem A.3. A finite matrix Q is a generator matrix for a CTMC iff $P(t)=e^{t Q}$ is a stochastic matrix for all $t \geq 0$.

Proof. $P(t)=I+t Q+O\left(t^{2}\right)\left(f(t)=O(t) \Rightarrow \frac{f(t)}{t} \leq c\right.$, for small $\left.t, c<\infty\right) . q_{i j} \geq 0$ if and only if $P_{i j}(t) \geq 0, \forall i \neq j$ and $t \geq 0$ sufficiently small. $P(t)=P\left(\frac{t}{n}\right)^{n}$. Note that if Q has zero row sums, Q^{n} also has zero row sums.

$$
\begin{aligned}
& \sum_{j}\left[Q^{n}\right]_{i j}=\sum_{j} \sum_{k}\left[Q^{n-1}\right]_{i k} Q_{k j}=\sum_{j} \sum_{k} Q_{k j}\left[Q^{n-1}\right]_{i k}=0 . \\
& \sum_{j} P_{i j}(t)=1+\sum_{n \in \mathbb{N}} \frac{t^{n}}{n!} \sum_{j}\left[Q^{n}\right]_{i j}=1+0=1 .
\end{aligned}
$$

Conversely $\sum_{j} P_{i j}(t)=1, \forall t \geq 0$, then $\sum_{j} Q_{i j}=\frac{d P_{i j}(t)}{d t}=0$.

