
Lecture 18: Reversibility

1 Introduction
A stochastic process {X(t) ∈ I : t ∈ T} is reversible if (X(ti) : i ∈ [n]) has the same distribution as
(X(τ− ti) : i ∈ [n]) for all ti,τ ∈ T, i ∈ [n].

Lemma 1.1. A reversible process is stationary.

Proof. Since X(t) is reversible, both (X(ti) : i ∈ [n]) and (X(τ + ti) : i ∈ [n]) have the same distribution as
(X(−ti) : i ∈ [n]).

Theorem 1.2. A stationary Markov chain with state space I and probability transition matrix P is re-
versible iff there exists a probability distribution π , that satisfy the detailed balanced conditions

πiPi j = π jPji, ∀i, j ∈ I. (1)

When such a distribution π exists, it is the equilibrium distribution of the process.

Proof. We assume that X(t) is reversible, and hence stationary. We denote the stationary distribution by
π , and by reversibility of X(t) we have

Pr{X(t) = i,X(t +1) = j}= Pr{X(t) = j,X(t +1) = i},

and hence we obtain the detailed balanced conditions (1).
Conversely, let π be the distribution that satisfies the detailed balanced conditions, then summing up

both sides over j ∈ I, we see that this distribution is the equilibrium distribution. Let ji ∈ I for i ∈ [m],
and we write

Pr{X(t + i−1) = ji−1, i ∈ [m]}= π( j0)
m

∏
i=1

P( ji−1, ji),

Pr{X(t ′+ i−1) = jm−i+1, i ∈ [m]}= π(im)
1

∏
j=m

P( ji, ji−1).

From detailed balanced equations (1) it follows that RHS of above two equations are identical. Taking
τ = t + t ′+m, we deduce that X(t) is reversible.

Theorem 1.3. A stationary Markov process with state space I and generator matrix Q is reversible iff
there exists a probability distribution π , that satisfy the detailed balanced conditions

πiQi j = π jQ ji, ∀i, j ∈ I. (2)

When such a distribution π exists, it is the equilibrium distribution of the process.
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Proof. We assume that X(t) is reversible, and hence stationary. We denote the stationary distribution by
π , and by reversibility of X(t) we have

Pr{X(t) = i,X(t + τ) = j}= Pr{X(t) = j,X(t + τ) = i},

and hence we obtain the detailed balanced conditions (2) by taking limit τ → 0.
Conversely, let π be the distribution that satisfies the detailed balanced conditions, then summing

up both sides over j ∈ I, we see that this distribution is the equilibrium distribution. Consider now the
behavior of stationary process X(t) in [−T,T ]. Process may start at time −T in state j1 and sees m states
by time T . For i ∈ [m−1], we can define

S1 =−T, Si+1 = inf{t > Si : X(t) 6= X(Si)}, Sm+1 = T.

That is, the process spends period Si+1− Si in state ji for i ∈ [m], and transitions to state ji+1 at instant
Si+1 for i ∈ [m−1]. Probability of this event is

Pr{X(t) = ji, t ∈ [Si,Si+1), i ∈ [m]}= π( j1)
m−1

∏
i=1

Q( ji, ji+1)
m

∏
i=1

e−ν( ji)(Si+1−Si).

Consider the stationary process that start in state jm at time τ−T such that, for i ∈ [m]

X(t) = ji, t ∈ [τ−Si+1,τ−Si).

Probability of this event is

Pr{X(t) = ji, t ∈ [τ−Si+1,τ−Si), i ∈ [m]}= π( jm)
m

∏
i=2

Q( ji, ji−1)
m

∏
i=1

e−ν( ji)(Si+1−Si).

From detailed balance equation (2) it follows that

π( j1)
m−1

∏
i=1

Q( ji, ji+1) = π( jm)
m

∏
i=2

Q( ji, ji−1).

Hence, it follows that X(t) is reversible.

The probability flux from state i to state j is defined as πiQi j.

Lemma 1.4. For a stationary Markov process, probability flux balances across a cut A⊆ I, that is

∑
i∈A

∑
j/∈A

πiQi j = ∑
i∈A

∑
j/∈A

π jQ ji.

Proof. From full balance condition πQ = 0, we get

∑
j∈A

∑
i∈I

πiQi j = ∑
j∈A

∑
i∈I

π jQ ji = 0.

Further, we have the following identity

∑
j∈A

∑
i∈A

πiQi j = ∑
j∈A

∑
i∈A

π jQ ji.

Subtracting the second identity from the first, we get the result.

2



Corollary 1.5. For A = {i}, the above equation reduces to the full balance equation for state i, i.e.,

∑
i 6= j

πiQi j = ∑
j 6=i

π jQ ji

⇒ ∑
j∈I

πiQi j−πiQii = ∑
j∈I

π jQ ji−πiQii

⇒ 0 = ∑
j∈I

π jQ ji.

Is every Markov chain reversible? If we try to prove the equations necessary for time reversibility,
xiPi j = x jPji for all i, j ∈ I, for any arbitrary Markov chain, one may not end up getting any solution. This
is so because, if Pi jPjk > 0, then

xi

xk
=

Pk jPji

Pi jPjk
6= Pki

Pik
.

Thus, we see that a necessary condition for time reversibility is

Pi jPjkPki = PikPk jPji for all i, j,k ∈ I.

Theorem 1.6 (Kolmogorov’s criterion for reversibility of Markov chains). A stationary Markov chain
is time reversible if and only if starting in state i, any path back to state i has the same probability as the
reversed path, for all initial states i ∈ I. That is, if

Pii1Pi1i2 . . .Piki = Piik Pikik−1 . . .Pi1i.

Proof. The proof of necessity is as indicated above. To see the sufficiency part, fix states i, j. For any
positive integer k, we compute

(Pk)i jPji = ∑
i1,i2,...ik

Pii1 . . .Pik jPji = ∑
i1,i2,...ik

Pi jPjik . . .Pi1i = Pi j(Pk) ji.

Taking k→∞ and noticing that (Pk)i j
k→∞→ π j ∀i, j ∈ I, we get the desired result by appealing to Theorem

1.2.
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