Lecture 20: Reversible Processes and Queues

1 Examples of reversible processes

1.1 Birth-death processes

We define two non-negative sequences birth and death rates denoted by $\{\lambda_n : n \in \mathbb{N}_0\}$ and $\{\mu_n : n \in \mathbb{N}_0\}$. A Markov process $\{X_t \in \mathbb{N}_0 : t \in \mathbb{R}\}$ on the state space \mathbb{N}_0 is called a *birth-death process* if its infinitesimal transition probabilities satisfy

$$P_{n,n+m}(h) = \begin{cases} \lambda_n h + o(h), & \text{if } m = 1, \\ \mu_n h + o(h), & \text{if } m = -1, \\ o(h), & \text{if } |m| > 1. \end{cases}$$

We say f(h) = o(h) if $\lim_{h\to 0} f(h)/h = 0$. In other words, a birth-death process is any CTMC with generator of the form

$$Q = egin{pmatrix} -\lambda_0 & \lambda_0 & 0 & 0 & 0 \ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 & 0 & \cdots \ 0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & 0 & \cdots \ 0 & 0 & \mu_3 & -(\lambda_3 + \mu_3) & \lambda_3 & \cdots \ dots & dots \end{pmatrix}.$$

Proposition 1.1. An ergodic birth-death process in steady-state is time-reversible.

Proof. Since the process is stationary, the probability flux must balance across any cut of the form $A = \{0, 1, 2, ..., i\}, i \ge 0$. But, this is precisely the equation $\pi_i \lambda_i = \pi_j \mu_j$ since there are no other transitions possible across the cut. So the process is time-reversible.

In fact, the following, more general, statement can be proven using similar ideas.

Proposition 1.2. Consider an ergodic CTMC on a countable state space I with the following property: for any pair of states $i \neq j \in I$, there is a unique path $i = i_0 \rightarrow i_1 \rightarrow \cdots \rightarrow i_{n(i,j)} = j$ of distinct states having positive probability. Then the CTMC in steady-state is reversible.

1.2 Truncated Markov Processes

Consider a transition rate matrix $(Q_{ij})_{i,j\in I}$ on the countable state space *I*. Given a nonempty subset $A \subseteq I$, the truncation of *Q* to *A* is the transition rate matrix $\{Q_{ij}^A : i, j \in A\}$, where for all $i, j \in A$

$$Q^A_{ij} = \begin{cases} Q_{ij}, & j \neq i, \ -\sum_{k \neq i, k \in A} Q_{ik}, & j = i. \end{cases}$$

Proposition 1.3. Suppose $\{X_t : t \in \mathbb{R}\}$ is an irreducible, time-reversible CTMC on the countable state space I, with generator $Q = \{Q_{ij} : i, j \in I\}$ and stationary probabilities $\pi = \{\pi_j : j \in I\}$. Suppose the truncation Q^A is irreducible for some $A \subseteq I$. Then, any stationary CTMC with state space A and generator Q^A is also time-reversible, with stationary probabilities

$$\pi_j^A = rac{\pi_j}{\sum_{i \in A} \pi_i}, \ j \in A.$$

Proof. It is clear that π^A is a distribution on state space A. We must show the reversibility with this distribution π^A . That is, we must show for all $i, j \in A$

$$\pi_i^A Q_{ij} = \pi_i^A Q_{ji}.$$

However, this is true since the original chain is time reversible.

1.3 The Metropolis-Hastings algorithm

Let $\{a_j \in \mathbb{R}_+ : j \in [m]\}\$ be a set of (known) positive numbers with $A = \sum_{i=1}^m a_i$. Suppose our goal is to build a sampler for a random variable with probability mass function $\pi_j = \frac{a_j}{A}$, for each $j \in [m]$, where *m* is large and *A* is difficult to compute directly. This rules out direct evaluation of the fraction $\frac{a_j}{A}$.

Idea. A clever way of (approximately) generating a sample from the distribution $\pi = {\pi_j : j \in \mathbb{N}}$ is by constructing an easy-to-simulate Markov chain with limiting (stationary) distribution π . We simply run this Markov chain long enough and return the sample (state) at the end.

Let *M* be an irreducible transition probability matrix on the integers [m] such that $M = M^T$. An example is the transition matrix of an iid sequence of uniform random variables on [m]. Consider the Markov chain $\{X_i : i \in \mathbb{N}\}$ on the state space [m] with the following transition probabilities:

$$P_{ij} = \begin{cases} M_{ij} \min\left(1, \frac{a_j}{a_i}\right), & j \neq i, \\ 1 - \sum_{k \neq i} M_{ik} \left\{1 - \min\left(1, \frac{a_k}{a_i}\right)\right\}, & j = i. \end{cases}$$

Note that the key property that allows us to easily simulate this Markov chain is that only the relative ratios a_i/a_i are required, and not A!

It can be directly verified that (1) this Markov chain is irreducible, and that (2) it is reversible with equilibrium distribution π !

1.4 Random walks on edge-weighted graphs

Consider an undirected graph G = (I, E) with the vertex set I and the edge set E being a subset of unordered pairs of elements from I. Assume having a positive number w_{ij} associated with each edge $\{i, j\}$ in E. Further the edge weight w_{ij} is defined to be 0 if $\{i, j\}$ is not an edge of the graph. Suppose that a particle moves in discrete time, from one vertex to another in the following manner: If the particle is presently at vertex i then it will next move to vertex j with probability

$$P_{ij} = \frac{w_{ij}}{\sum_j w_{ij}}.$$

The Markov chain describing the sequence of vertices visited by the particle is a random walk on an undirected edge-weighted graph. Google's PageRank algorithm, to estimate the relative importance of webpages, is essentially a random walk on a graph!

Proposition 1.4. Consider an irreducible Markov chain that describes the random walk on an edge weighted graph with a finite number of vertices. In steady state, this Markov chain is time reversible with stationary probability of being in a state $i \in I$ given by

$$\pi_i = \frac{\sum_j w_{ij}}{\sum_j \sum_k w_{kj}}.$$
(1)

Proof. Using the definition of transition probabilities for this Markov chain, we notice that the detailed balance equation for each pair of states $i, j \in I$ reduces to

$$\frac{\alpha_{i}w_{ij}}{\sum_{k}w_{ik}} = \frac{\alpha_{j}w_{ji}}{\sum_{k}w_{jk}}$$

From the symmetry of edge weights in undirected graphs, it follows that $w_{ij} = w_{ji}$. Hence, we see that the distribution π defined as in (1) solves the equation, and we get the desired result.

The following 'dual' result also holds:

Lemma 1.5. Let $\{X\}_n$ be a reversible Markov chain on a finite state space I and transition probability matrix P. Then, there exists a random walk on a weighted, undirected graph G with the same transition probability matrix P.

Proof. We create a graph G = (I, E), where $(i, j) \in E$ if and only if $P_{ij} > 0$. We then set edge weights

$$w_{ij} \triangleq \pi_i P_{ij} = \pi_j P_{ji} = w_{ji},$$

where π is the stationary distribution of *X*. With this choice of weights, it is easy to check that $w_i = \sum_i w_{ij} = \pi_i$, and the transition matrix associated with a random walk on this graph is exactly *P*.

2 General queueing theory

The notation A/B/C/D/E for a queueing system indicates

- A: Inter-arrival time distribution,
- B: Service time distribution,
- C: Number of servers,
- D: Maximum number of jobs that can be waiting and in service at any time (∞ by default), and
- E: Queueing service discipline (FIFO by default).

Theorem 2.1 (PASTA). Poisson arrivals see time averages. At any time t, we denote a system state by N(t) and the number of arrivals in [0,t) by A(t). The nth arrival instant is denoted by A_n and B a Borel measurable set in \mathbb{R}_+ , then

$$\bar{\tau}_B \triangleq \lim_{t \in \mathbb{R}_+} \frac{1}{t} \int_0^t \mathbb{1}\{N(u) \in B\} du = \lim_{n \in \mathbb{N}} \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{N(A_i-) \in B\} \triangleq \bar{c}_B.$$

Proof. We will show the special case when N(t) is the number of customers in the system at time *t*, and $B = \{k\}$. We define for $k \in \mathbb{N}_0$

$$P_k \triangleq \lim_{t \in \mathbb{R}_+} \Pr\{N(t) = k\} \qquad A_k \triangleq \lim_{t \in \mathbb{R}_+} \Pr\{N(t-) = k | A_{k+1} = t\}.$$

Using independent increment property of Poisson arrivals, Baye's rule, and continuity of probabilities, we can write the second limiting probability as

$$A_{k} = \lim_{t \in \mathbb{R}_{+}} \lim h \downarrow 0 \frac{\Pr\{N(t-) = k, A(t+h) - A(t) = 1\}}{\Pr\{A(t+h) - A(t) = 1\}} = \lim_{t \in \mathbb{R}_{+}} \Pr\{N(t) = k\} = P_{k}.$$

Theorem 2.2 (Little's law). Consider a stable single server queue. Let T_i be waiting time of customer *i*, N(t) be the number of customers in the system at time *t*, and A(t) be the number of customers that entered system in duration [0,t), then

$$\lim_{t\to\infty}\frac{\int_0^t N(u)du}{t} = \lim_{t\to\infty}\frac{\sum_{i=1}^{A(t)}T_i}{A(t)}.$$

Proof. Let A(t), D(t) respectively denote the number of arrivals and departures in time [0, t). Then, we have

$$\sum_{i=1}^{D(t)} T_i \leq \int_0^t N(u) du \leq \sum_{i=1}^{A(t)} T_i$$

Further, for a stable queue we have

$$\lim_{t \to \infty} \frac{D(t)}{t} = \lim_{t \to \infty} \frac{A(t)}{t}$$

Combining these two results, the theorem follows.

2.1 The M/M/1 queue

The M/M/1 queue is the simplest and most studied models of queueing systems. We assume a continuoustime queueing model with following components.

- There is a single queue for waiting that can accommodate arbitrarily large number of customers.
- Arrivals to the queue occur according to a Poisson process with rate $\lambda > 0$. That is, let A_n be the arrival instant of the *n*th customer, then the sequence of inter-arrival times $\{A_n A_{n-1} : n \in \mathbb{N}\}$ is *iid* exponentially distributed with rate λ .
- There is a single server and the service time of *n*th customer is denoted by a random variable S_n . The sequence of service times $\{S_n : n \in \mathbb{N}\}$ are *iid* exponentially distributed with rate $\mu > 0$, independent of the Poisson arrival process.
- We assume that customers join the tail of the queue, and hence begin service in the order that they arrive *first-in-queue-first-out* (FIFO).

Let X(t) denote the number of customers in the system at time $t \in \mathbb{R}_+$, where "system" means the queue plus the service area. For example, X(t) = 2 means that there is one customer in service and one waiting in line. Due to continuous distributions of inter-arrival and service times, a transition can only occur at customer arrival or departure times. Further, departures occur whenever a service completion occurs. Let D_n denote the *n*th departure from the system. At an arrival time A_n , the number $X(A_n) = X(A_n-) + 1$ jumps up by the amount 1, whereas at a departure time D_n , then number $X(D_n) = X(D_n-) - 1$ jumps down by the amount 1.

For the M/M/1 queue, one can argue that $\{X(t) : t \in \mathbb{R}_+\}$ is a CTMC on the state space \mathbb{N}_0 . We will soon see that a *stable* M/M/1 queue is time-reversible.

2.1.1 Transition rates

Given the current state $\{X(t) = i\}$, the only transitions possible in an infinitesimal time interval are (a) a single customer arrives, or (b) a single customer leaves (if $i \ge 1$). It follows that the infinitesimal generator for the CTMC $\{X(t)\}_t$ is

$$Q_{ij} = \begin{cases} \lambda, & j = i+1, \\ \mu, & j = i-1, \\ 0, & |j-i| > 1. \end{cases}$$

Since $\lambda, \mu > 0$, this defines an irreducible CTMC.

2.1.2 Equilibrium distribution and reversibility

The M/M/1 queue's generator defines a birth-death process. Hence, if it is stationary, then it must be time-reversible, with the equilibrium distribution π satisfying the detailed balance for each $i \in \mathbb{N}_0$

$$\pi_i \lambda = \pi_{i+1} \mu$$
.

This yields $\pi_{i+1} = \frac{\lambda}{\mu} \pi_i$. Since $\sum_{i \ge 0} \pi = 1$, we must have $\rho \triangleq \frac{\lambda}{\mu} < 1$, giving for each $i \in \mathbb{N}_0$

$$\pi_i = (1-\rho)\rho^i.$$

In other words, if $\lambda < \mu$, then the equilibrium distribution of the number of customers in the system is geometric with parameter $\rho = \lambda/\mu$. We say that the M/M/1 queue is in the *stable* regime when $\rho < 1$. We have thus shown

Corollary 2.3. The number of customers in an M/M/1 queueing system at equilibrium is a reversible Markov process.

Further, since M/M/1 queue is a reversible CTMC, the following theorem follows.

Theorem 2.4 (Burke). Departures from a stable M/M/1 queue are Poisson with same rate as the arrivals.

2.1.3 Limiting waiting room: M/M/1/K

Consider a variant of the M/M/1 queueing system that has a finite buffer capacity of at most *k* customers. Thus, customers that arrive when there are already *k* customers present are 'rejected'. It follows that the CTMC for this system is simply the M/M/1 CTMC truncated to the state space $\{0, 1, ..., K\}$, and so it must be time-reversible with stationary distribution $\pi_i = \rho^i / \sum_{i=0}^k \rho^i$, $0 \le i \le k$.

(Two queues with joint waiting room). Consider two independent M/M/1 queues with arrival and service rates λ_i and μ_i respectively for $i \in [2]$. Then, joint distribution of two queues is

$$\pi(n_1, n_2) = (1 - \rho_1)\rho_1^{n_1}(1 - \rho_2)\rho_2^{n_2}, n_1, n_2 \in \mathbb{N}_0$$

Suppose both the queues are sharing a common waiting room, where if arriving customer finds *R* waiting customer then it leaves. In this case,

$$\pi(n_1, n_2) = (1 - \rho_1) \rho_1^{n_1} (1 - \rho_2) \rho_2^{n_2}, \ (n_1, n_2) \in A \subseteq \mathbb{N}_0 \times \mathbb{N}_0.$$