Lecture 20: Reversible Processes and Queues

1 Examples of reversible processes

1.1 Birth-death processes

We define two non-negative sequences birth and death rates denoted by $\left\{\lambda_{n}: n \in \mathbb{N}_{0}\right\}$ and $\left\{\mu_{n}: n \in \mathbb{N}_{0}\right\}$. A Markov process $\left\{X_{t} \in \mathbb{N}_{0}: t \in \mathbb{R}\right\}$ on the state space \mathbb{N}_{0} is called a birth-death process if its infinitesimal transition probabilities satisfy

$$
P_{n, n+m}(h)= \begin{cases}\lambda_{n} h+o(h), & \text { if } m=1, \\ \mu_{n} h+o(h), & \text { if } m=-1, \\ o(h), & \text { if }|m|>1\end{cases}
$$

We say $f(h)=o(h)$ if $\lim _{h \rightarrow 0} f(h) / h=0$. In other words, a birth-death process is any CTMC with generator of the form

$$
Q=\left(\begin{array}{cccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 & \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & 0 & \cdots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 & \cdots \\
0 & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Proposition 1.1. An ergodic birth-death process in steady-state is time-reversible.
Proof. Since the process is stationary, the probability flux must balance across any cut of the form $A=$ $\{0,1,2, \ldots, i\}, i \geq 0$. But, this is precisely the equation $\pi_{i} \lambda_{i}=\pi_{j} \mu_{j}$ since there are no other transitions possible across the cut. So the process is time-reversible.

In fact, the following, more general, statement can be proven using similar ideas.
Proposition 1.2. Consider an ergodic CTMC on a countable state space I with the following property: for any pair of states $i \neq j \in I$, there is a unique path $i=i_{0} \rightarrow i_{1} \rightarrow \cdots \rightarrow i_{n(i, j)}=j$ of distinct states having positive probability. Then the CTMC in steady-state is reversible.

1.2 Truncated Markov Processes

Consider a transition rate matrix $\left(Q_{i j}\right)_{i, j \in I}$ on the countable state space I. Given a nonempty subset $A \subseteq I$, the truncation of Q to A is the transition rate matrix $\left\{Q_{i j}^{A}: i, j \in A\right\}$, where for all $i, j \in A$

$$
Q_{i j}^{A}= \begin{cases}Q_{i j}, & j \neq i \\ -\sum_{k \neq i, k \in A} Q_{i k}, & j=i\end{cases}
$$

Proposition 1.3. Suppose $\left\{X_{t}: t \in \mathbb{R}\right\}$ is an irreducible, time-reversible CTMC on the countable state space I, with generator $Q=\left\{Q_{i j}: i, j \in I\right\}$ and stationary probabilities $\pi=\left\{\pi_{j}: j \in I\right\}$. Suppose the truncation Q^{A} is irreducible for some $A \subseteq I$. Then, any stationary CTMC with state space A and generator Q^{A} is also time-reversible, with stationary probabilities

$$
\pi_{j}^{A}=\frac{\pi_{j}}{\sum_{i \in A} \pi_{i}}, j \in A
$$

Proof. It is clear that π^{A} is a distribution on state space A. We must show the reversibility with this distribution π^{A}. That is, we must show for all $i, j \in A$

$$
\pi_{i}^{A} Q_{i j}=\pi_{j}^{A} Q_{j i}
$$

However, this is true since the original chain is time reversible.

1.3 The Metropolis-Hastings algorithm

Let $\left\{a_{j} \in \mathbb{R}_{+}: j \in[m]\right\}$ be a set of (known) positive numbers with $A=\sum_{i=1}^{m} a_{i}$. Suppose our goal is to build a sampler for a random variable with probability mass function $\pi_{j}=\frac{\bar{a}_{j}}{A}$, for each $j \in[m]$, where m is large and A is difficult to compute directly. This rules out direct evaluation of the fraction $\frac{a_{j}}{A}$.

Idea. A clever way of (approximately) generating a sample from the distribution $\pi=\left\{\pi_{j}: j \in \mathbb{N}\right\}$ is by constructing an easy-to-simulate Markov chain with limiting (stationary) distribution π. We simply run this Markov chain long enough and return the sample (state) at the end.

Let M be an irreducible transition probability matrix on the integers $[m]$ such that $M=M^{T}$. An example is the transition matrix of an iid sequence of uniform random variables on $[m]$. Consider the Markov chain $\left\{X_{i}: i \in \mathbb{N}\right\}$ on the state space $[m]$ with the following transition probabilities:

$$
P_{i j}= \begin{cases}M_{i j} \min \left(1, \frac{a_{j}}{a_{i}}\right), & j \neq i, \\ 1-\sum_{k \neq i} M_{i k}\left\{1-\min \left(1, \frac{a_{k}}{a_{i}}\right)\right\}, & j=i\end{cases}
$$

Note that the key property that allows us to easily simulate this Markov chain is that only the relative ratios a_{j} / a_{i} are required, and not A !

It can be directly verified that (1) this Markov chain is irreducible, and that (2) it is reversible with equilibrium distribution π !

1.4 Random walks on edge-weighted graphs

Consider an undirected graph $G=(I, E)$ with the vertex set I and the edge set E being a subset of unordered pairs of elements from I. Assume having a positive number $w_{i j}$ associated with each edge $\{i, j\}$ in E. Further the edge weight $w_{i j}$ is defined to be 0 if $\{i, j\}$ is not an edge of the graph. Suppose that a particle moves in discrete time, from one vertex to another in the following manner: If the particle is presently at vertex i then it will next move to vertex j with probability

$$
P_{i j}=\frac{w_{i j}}{\sum_{j} w_{i j}}
$$

The Markov chain describing the sequence of vertices visited by the particle is a random walk on an undirected edge-weighted graph. Google's PageRank algorithm, to estimate the relative importance of webpages, is essentially a random walk on a graph!

Proposition 1.4. Consider an irreducible Markov chain that describes the random walk on an edge weighted graph with a finite number of vertices. In steady state, this Markov chain is time reversible with stationary probability of being in a state $i \in I$ given by

$$
\begin{equation*}
\pi_{i}=\frac{\sum_{j} w_{i j}}{\sum_{j} \sum_{k} w_{k j}} \tag{1}
\end{equation*}
$$

Proof. Using the definition of transition probabilities for this Markov chain, we notice that the detailed balance equation for each pair of states $i, j \in I$ reduces to

$$
\frac{\alpha_{i} w_{i j}}{\sum_{k} w_{i k}}=\frac{\alpha_{j} w_{j i}}{\sum_{k} w_{j k}} .
$$

From the symmetry of edge weights in undirected graphs, it follows that $w_{i j}=w_{j i}$. Hence, we see that the distribution π defined as in (1) solves the equation, and we get the desired result.

The following 'dual' result also holds:
Lemma 1.5. Let $\{X\}_{n}$ be a reversible Markov chain on a finite state space I and transition probability matrix P. Then, there exists a random walk on a weighted, undirected graph G with the same transition probability matrix P.

Proof. We create a graph $G=(I, E)$, where $(i, j) \in E$ if and only if $P_{i j}>0$. We then set edge weights

$$
w_{i j} \triangleq \pi_{i} P_{i j}=\pi_{j} P_{j i}=w_{j i},
$$

where π is the stationary distribution of X. With this choice of weights, it is easy to check that $w_{i}=$ $\sum_{j} w_{i j}=\pi_{i}$, and the transition matrix associated with a random walk on this graph is exactly P.

2 General queueing theory

The notation $\mathrm{A} / \mathrm{B} / \mathrm{C} / \mathrm{D} / \mathrm{E}$ for a queueing system indicates
A: Inter-arrival time distribution,
B: Service time distribution,
C: Number of servers,
D: Maximum number of jobs that can be waiting and in service at any time (∞ by default), and
E: Queueing service discipline (FIFO by default).
Theorem 2.1 (PASTA). Poisson arrivals see time averages. At any time t, we denote a system state by $N(t)$ and the number of arrivals in $[0, t)$ by $A(t)$. The nth arrival instant is denoted by A_{n} and B a Borel measurable set in \mathbb{R}_{+}, then

$$
\bar{\tau}_{B} \triangleq \lim _{t \in \mathbb{R}_{+}} \frac{1}{t} \int_{0}^{t} 1\{N(u) \in B\} d u=\lim _{n \in \mathbb{N}} \frac{1}{n} \sum_{i=1}^{n} 1\left\{N\left(A_{i}-\right) \in B\right\} \triangleq \bar{c}_{B} .
$$

Proof. We will show the special case when $N(t)$ is the number of customers in the system at time t, and $B=\{k\}$. We define for $k \in \mathbb{N}_{0}$

$$
P_{k} \triangleq \lim _{t \in \mathbb{R}_{+}} \operatorname{Pr}\{N(t)=k\} \quad A_{k} \triangleq \lim _{t \in \mathbb{R}_{+}} \operatorname{Pr}\left\{N(t-)=k \mid A_{k+1}=t\right\}
$$

Using independent increment property of Poisson arrivals, Baye's rule, and continuity of probabilities, we can write the second limiting probability as

$$
A_{k}=\lim _{t \in \mathbb{R}_{+}} \lim h \downarrow 0 \frac{\operatorname{Pr}\{N(t-)=k, A(t+h)-A(t)=1\}}{\operatorname{Pr}\{A(t+h)-A(t)=1\}}=\lim _{t \in \mathbb{R}_{+}} \operatorname{Pr}\{N(t)=k\}=P_{k} .
$$

Theorem 2.2 (Little's law). Consider a stable single server queue. Let T_{i} be waiting time of customer i, $N(t)$ be the number of customers in the system at time t, and $A(t)$ be the number of customers that entered system in duration $[0, t)$, then

$$
\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} N(u) d u}{t}=\lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{A(t)} T_{i}}{A(t)} .
$$

Proof. Let $A(t), D(t)$ respectively denote the number of arrivals and departures in time $[0, t)$. Then, we have

$$
\sum_{i=1}^{D(t)} T_{i} \leq \int_{0}^{t} N(u) d u \leq \sum_{i=1}^{A(t)} T_{i}
$$

Further, for a stable queue we have

$$
\lim _{t \rightarrow \infty} \frac{D(t)}{t}=\lim _{t \rightarrow \infty} \frac{A(t)}{t}
$$

Combining these two results, the theorem follows.

2.1 The M/M/1 queue

The M/M/1 queue is the simplest and most studied models of queueing systems. We assume a continuoustime queueing model with following components.

- There is a single queue for waiting that can accommodate arbitrarily large number of customers.
- Arrivals to the queue occur according to a Poisson process with rate $\lambda>0$. That is, let A_{n} be the arrival instant of the nth customer, then the sequence of inter-arrival times $\left\{A_{n}-A_{n-1}: n \in \mathbb{N}\right\}$ is iid exponentially distributed with rate λ.
- There is a single server and the service time of nth customer is denoted by a random variable S_{n}. The sequence of service times $\left\{S_{n}: n \in \mathbb{N}\right\}$ are iid exponentially distributed with rate $\mu>0$, independent of the Poisson arrival process.
- We assume that customers join the tail of the queue, and hence begin service in the order that they arrive first-in-queue-first-out (FIFO).

Let $X(t)$ denote the number of customers in the system at time $t \in \mathbb{R}_{+}$, where "system" means the queue plus the service area. For example, $X(t)=2$ means that there is one customer in service and one waiting in line. Due to continuous distributions of inter-arrival and service times, a transition can only occur at customer arrival or departure times. Further, departures occur whenever a service completion occurs. Let D_{n} denote the nth departure from the system. At an arrival time A_{n}, the number $X\left(A_{n}\right)=X\left(A_{n}-\right)+1$ jumps up by the amount 1 , whereas at a departure time D_{n}, then number $X\left(D_{n}\right)=X\left(D_{n}-\right)-1$ jumps down by the amount 1 .

For the $\mathrm{M} / \mathrm{M} / 1$ queue, one can argue that $\left\{X(t): t \in \mathbb{R}_{+}\right\}$is a CTMC on the state space \mathbb{N}_{0}. We will soon see that a stable $\mathrm{M} / \mathrm{M} / 1$ queue is time-reversible.

2.1.1 Transition rates

Given the current state $\{X(t)=i\}$, the only transitions possible in an infinitesimal time interval are (a) a single customer arrives, or (b) a single customer leaves (if $i \geq 1$). It follows that the infinitesimal generator for the CTMC $\{X(t)\}_{t}$ is

$$
Q_{i j}= \begin{cases}\lambda, & j=i+1 \\ \mu, & j=i-1 \\ 0, & |j-i|>1\end{cases}
$$

Since $\lambda, \mu>0$, this defines an irreducible CTMC.

2.1.2 Equilibrium distribution and reversibility

The M/M/1 queue's generator defines a birth-death process. Hence, if it is stationary, then it must be time-reversible, with the equilibrium distribution π satisfying the detailed balance for each $i \in \mathbb{N}_{0}$

$$
\pi_{i} \lambda=\pi_{i+1} \mu
$$

This yields $\pi_{i+1}=\frac{\lambda}{\mu} \pi_{i}$. Since $\sum_{i \geq 0} \pi=1$, we must have $\rho \triangleq \frac{\lambda}{\mu}<1$, giving for each $i \in \mathbb{N}_{0}$

$$
\pi_{i}=(1-\rho) \rho^{i}
$$

In other words, if $\lambda<\mu$, then the equilibrium distribution of the number of customers in the system is geometric with parameter $\rho=\lambda / \mu$. We say that the $M / M / 1$ queue is in the stable regime when $\rho<1$. We have thus shown

Corollary 2.3. The number of customers in an $M / M / 1$ queueing system at equilibrium is a reversible Markov process.

Further, since M/M/1 queue is a reversible CTMC, the following theorem follows.
Theorem 2.4 (Burke). Departures from a stable M/M/l queue are Poisson with same rate as the arrivals.

2.1.3 Limiting waiting room: $\mathrm{M} / \mathrm{M} / 1 / K$

Consider a variant of the $\mathrm{M} / \mathrm{M} / 1$ queueing system that has a finite buffer capacity of at most k customers. Thus, customers that arrive when there are already k customers present are 'rejected'. It follows that the CTMC for this system is simply the M/M/1 CTMC truncated to the state space $\{0,1, \ldots, K\}$, and so it must be time-reversible with stationary distribution $\pi_{i}=\rho^{i} / \sum_{j=0}^{k} \rho^{j}, 0 \leq i \leq k$.
(Two queues with joint waiting room). Consider two independent $M / M / 1$ queues with arrival and service rates λ_{i} and μ_{i} respectively for $i \in[2]$. Then, joint distribution of two queues is

$$
\pi\left(n_{1}, n_{2}\right)=\left(1-\rho_{1}\right) \rho_{1}^{n_{1}}\left(1-\rho_{2}\right) \rho_{2}^{n_{2}}, n_{1}, n_{2} \in \mathbb{N}_{0}
$$

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R waiting customer then it leaves. In this case,

$$
\pi\left(n_{1}, n_{2}\right)=\left(1-\rho_{1}\right) \rho_{1}^{n_{1}}\left(1-\rho_{2}\right) \rho_{2}^{n_{2}}, \quad\left(n_{1}, n_{2}\right) \in A \subseteq \mathbb{N}_{0} \times \mathbb{N}_{0}
$$

