Lecture 23 : Martingales

1 Martingales

A filtration is an increasing sequence of σ -fields, with *n*th σ -field denoted by \mathcal{F}_n . A sequence $X = \{X_n : n \in \mathbb{N}\}$ of random variables is said to be **adapted** to the filtration $\{\mathcal{F}_n : n \in \mathbb{N}\}$ if $X_n \in \mathcal{F}_n$. A discrete stochastic process $\{X_n, n \in \mathbb{N}\}$ is said to be a **martingale** with respect to $\{\mathcal{F}_n : n \in \mathbb{N}\}$ if

 $\mathbf{i}_{-} \mathbb{E}[|X_n|] < \infty,$

ii_ X_n is adapted to \mathcal{F}_n ,

iii_ $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$, for each $n \in \mathbb{N}$.

If the equality in third condition is replaced by \leq or \geq , then the process is called **supermartingale** or **submartingale**, respectively. For a discrete stochastic process $X = \{X_n : n \in \mathbb{N}\}$, its **natural filtration** is defined as

$$\mathcal{F}_n \triangleq \boldsymbol{\sigma}(X_1,\ldots,X_n).$$

Corollary 1.1. *For a martingale X adapted to a filtration* \mathcal{F} *, for each* $n \in \mathbb{N}$

$$\mathbb{E}X_n = \mathbb{E}X_1.$$

(Simple random walk). Let $\{X_i : i \in \mathbb{N}\}$ be a sequence of independent random variables with mean $\mathbb{E}X_i = 0$ and $\mathbb{E}|X_i| < \infty$ for each $i \in \mathbb{N}$. Let $Z_n = \sum_{i=1}^n X_i$ and $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ for each $n \in \mathbb{N}$. Then, $\{Z_n, n \in \mathbb{N}\}$ is a martingale with respect to the natural filtration of X. This follows, since $\mathbb{E}Z_n = 0$ and

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = \mathbb{E}[Z_n + X_{n+1}|\mathcal{F}_n] = Z_n.$$

(**Product martingale**). Let $\{X_i : i \in \mathbb{N}\}$ be a sequence of independent random variables with mean $\mathbb{E}X_i = 1$ and $\mathbb{E}|X_i| < \infty$ for each $i \in \mathbb{N}$. Let $Z_n = \prod_{i=1}^n X_i$ and $\mathfrak{F}_n = \sigma(X_1, \ldots, X_n)$. Then, $\{Z_n, n \in \mathbb{N}\}$ is a martingale with respect to the natural filtration of X. This follows, since $\mathbb{E}Z_n = 1$ and

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = \mathbb{E}[Z_n X_{n+1}|\mathcal{F}_n] = Z_n.$$

(**Branching process**). Consider a population where each individual *i* can produce an independent random number of offsprings Z_i in its lifetime, given by a common distribution $P = \{P_j : j \in \mathbb{N}_0\}$ and mean $\mu = \sum_{j \in \mathbb{N}} jP_j$. Let X_n denote the size of the nth generation, which is same as number of offsprings generated by (n-1)th generation. The discrete stochastic process $\{X_n \in \mathbb{N}_0 : n \in \mathbb{N}\}$ is called a branching process. Let $X_0 = 1$ and $\mathfrak{F}_n = \sigma(X_1, \ldots, X_n)$, then,

$$X_n = \sum_{i=1}^{X_{n-1}} Z_i.$$

Conditioning on X_{n-1} yields, $\mathbb{E}[X_n] = \mu^n$ where μ is the mean number of offspring per individual. Then $\{Y_n = X_n/\mu^n : n \in \mathbb{N}\}$ is a martingale because $\mathbb{E}[Y_n] = 1$ and

$$\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = \frac{1}{\mu^{n+1}} \mathbb{E}[\sum_{i=1}^{X_n} Z_i|\mathcal{F}_n] = \frac{X_n}{\mu^n} = Y_n.$$

(**Doob's Martingale**). Let X be an arbitrary random variable such that $\mathbb{E}[|X|] < \infty$, and $Y = \{Y_n : n \in \mathbb{N}\}$ be an arbitrary random sequence. Let \mathcal{F} be the natural filtration associated with the stochastic process Y, then

$$X_n = \mathbb{E}[X|\mathcal{F}_n]$$

is a martingale. The integrability condition can be directly verified, and

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}_{n+1}]|\mathcal{F}_n] = \mathbb{E}[X|\mathcal{F}_n] = X_n$$

(Centralized Doob sequence). For any sequence of random variables $X = \{X_n : n \in \mathbb{N}\}$ and its natural filtration \mathcal{F} , the random variables $X_i - \mathbb{E}[X_i|\mathcal{F}_{i-1}]$ have zero mean, then

$$Z_n = \sum_{i=1}^n (X_i - \mathbb{E}[X_i | \mathcal{F}_{i-1}])$$

is a martingale with respect to \mathfrak{F} , provided $\mathbb{E}|Z_n| < \infty$. To verify the same,

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = \mathbb{E}[Z_n + X_n - \mathbb{E}[X_n|\mathcal{F}_{n-1}]|\mathcal{F}_n] = Z_n + \mathbb{E}[X_n - \mathbb{E}[X_n|\mathcal{F}_{n-1}]] = Z_n$$

Lemma 1.2. If $X = \{X_n : n \in \mathbb{N}\}$ is a martingale with respect to a filtration $\{\mathcal{F}_n : n \in \mathbb{N}\}$ and f is a convex function, then $\{f(X_n) : n \in \mathbb{N}\}$ is a sub martigale with respect to the same filtration.

Proof. The result is a direct consequence of Jensen's inequality.

$$\mathbb{E}[f(X_{n+1})|\mathcal{F}_n] \ge f(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) = f(X_n).$$

Corollary 1.3. *Let* $a \in \mathbb{R}$ *be a constant.*

i₋ If $\{X_n : n \in \mathbb{N}\}$ is a submartingale, then so is $\{(X_n - a)_+ : n \in \mathbb{N}\}$.

 ii_{-} If $\{X_n : n \in \mathbb{N}\}$ is a supermartingale, then so is $\{X_n \land a : n \in \mathbb{N}\}$.

1.1 Stopping Times

Consider a discrete filtration $\mathcal{F} = \{\mathcal{F}_n : n \in \mathbb{N}_0\}$. A positive integer valued, possibly infinite, random variable *N* is said to be a **random time** with respect to the filtration \mathcal{F} , if the event $\{N = n\} \in \mathcal{F}_n$ for each $n \in \mathbb{N}$. If $\Pr\{N < \infty\} = 1$, then the random time *N* is said to be a **stopping time**. A sequence $\{H_n : n \in \mathbb{N}\}$ is **predictable** with respect to the filtration \mathcal{F} , if $H_n \in \mathcal{F}_{n-1}$ for each $n \in \mathbb{N}$. Further, we define

$$(H \cdot X)_n \triangleq \sum_{m=1}^n H_m(X_m - X_{m-1}).$$

Theorem 1.4. Let $\{X_n : n \in \mathbb{N}_0\}$ be a super martingale with respect to a filtration \mathcal{F} . If $H = \{H_n : n \in \mathbb{N}\}$ is predictable with respect to \mathcal{F} and each H_n is non-negative and bounded, then $(H \cdot X)_n$ is a super martingale w.r.t. \mathcal{F} .

Proof. It follows from the definition,

$$\mathbb{E}[(H \cdot X)_{n+1} | \mathcal{F}_n] = \mathbb{E}[H_{n+1}(X_{n+1} - X_n) + (H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \le (H \cdot X)_n.$$

Lemma 1.5. If $\{X_i : i \in \mathbb{N}\}$ is a submartingale and T is a stopping time such that $\Pr\{T \le n\} = 1$ then

$$\mathbb{E}X_1 \leq \mathbb{E}X_T \leq \mathbb{E}X_n$$

Proof. Since *T* is bounded, it follows from Martingale stopping theorem, that $\mathbb{E}X_T \ge \mathbb{E}X_1$. Now, since *T* is a stopping time, we see that for $\{T = k\}$

$$\mathbb{E}[X_n 1\{T=k\} | \mathcal{F}_T, T=k] = \mathbb{E}[X_n 1\{T=k\} | \mathcal{F}_k] \ge X_k 1\{T=k\} = X_T 1\{T=k\}.$$

Result follows by taking expectation on both sides and summing over k. That is,

$$\mathbb{E}X_n = \mathbb{E}\sum_{k=1}^n X_n 1\{T=k\} \ge \mathbb{E}\sum_{k=1}^n X_T 1\{T=k\} = \mathbb{E}X_T.$$

Corollary 1.6. Let T be a stopping time and $\{X_n : n \in \mathbb{N}\}$ be a supermartingale, then $\{X_{T \wedge n} : n \in \mathbb{N}\}$ os a supermartingale.

1.2 Stopped process

Consider a discrete stochastic process $X = \{X_n : n \in \mathbb{N}\}$ adapted to a discrete filtration \mathcal{F} . Let *T* be a random time for the filtration \mathcal{F} , then the **stopped process** $\{X_{T \wedge n} : n \in \mathbb{N}\}$ is defined as

$$X_{T \wedge n} = X_n \mathbf{1}_{\{n \le T\}} + X_T \mathbf{1}_{\{n > T\}}.$$

Proposition 1.7. Let $\{X_n : n \in \mathbb{N}\}$ be a martingale with a discrete filtration \mathfrak{F} . If T is an integer random time for the filtration \mathfrak{F} , then the stopped process $\{X_{T \wedge n}\}$ is a martingale.

Proof. We observe that $H = \{1\{n \le T\} : n \in \mathbb{N}\}$ is a non-negative, predictable, and bounded sequence, since

$$\{n \le T\} = \{T > n-1\} = \{T \le n-1\}^c = (\bigcup_{i=0}^{n-1} \{T = i\})^c = \bigcap_{i=1}^{n-1} \{T \ne i\} \in \mathcal{F}_{n-1}.$$

In terms of the predictable and bounded sequence H, we can write the stopped process as

$$X_{T \wedge n} = X_0 + \sum_{m=1}^{T \wedge n} (X_m - X_{m-1}) = X_0 + \sum_{m=1}^n 1\{m \le T\}(X_m - X_{m-1}) = X_0 + (H \cdot X)_n$$

Therefore from the previous theorem we have

$$\mathbb{E} X_{T \wedge n} = \mathbb{E} X_{T \wedge 1} = \mathbb{E} X_1.$$

Remark 1.8. For any martingale $\{X_n : n \in \mathbb{N}\}$ w.r.t. \mathcal{F} , we have $\mathbb{E}X_{T \wedge n} = \mathbb{E}X_1$, for all *n*. Now assume that *T* is a stopping time w.r.t. \mathcal{F} . It is immediate that stopped process converges almost surely to X_T , i.e.

$$\Pr\left\{\lim_{n\in\mathbb{N}}X_{T\wedge n}=X_T\right\}=1.$$

We are interested in knowing under what conditions will we have convergence in mean.

Theorem 1.9 (Martingale stopping theorem). Let X be a martingale and T be a stopping time adapted to a discrete filtration \mathcal{F} . Then, the random variable X_T is integrable and the stopped process $X_{T \wedge n}$ converges in mean to X_T , i.e.

$$\lim_{n\in\mathbb{N}}\mathbb{E}X_{T\wedge n}=\mathbb{E}X_T=\mathbb{E}X_1,$$

if either of the following conditions holds true.

- (i) T is bounded,
- (ii) $X_{T \wedge n}$ is uniformly bounded,

(iii) $\mathbb{E}T < \infty$, and for some real positive K, we have $\sup_{n \in \mathbb{N}} \mathbb{E}[|X_{n+1} - X_n||\mathcal{F}_n] < K$.

Proof. We show this is true for all three cases.

(i) Let *K* be the bound on *T* then for all $n \ge K$, we have $X_{T \land n} = X_T$, and hence it follows that

$$\mathbb{E}X_1 = \mathbb{E}X_{T \wedge n} = \mathbb{E}X_T, \ \forall n \geq K.$$

(ii) Dominated convergence theorem implies the result.

(iii) Since T is integrable and

$$X_{T\wedge n} \leq |X_1| + KT,$$

we observe that $X_{T \wedge n}$ is bounded by an integrable random variable, and hence result follows from dominated convergence theorem.

Corollary 1.10 (Wald's Equation). *If* T *is a stopping time for* $\{X_i : i \in \mathbb{N}\}$ *iid with* $\mathbb{E}|X| < \infty$ *and* $\mathbb{E}T < \infty$ *, then*

$$\mathbb{E}\sum_{i=1}^T X_i = \mathbb{E}T\mathbb{E}X.$$

Proof. Let $\mu = \mathbb{E}X$. Then $\{Z_n = \sum_{i=1}^n (X_i - \mu) : n \in \mathbb{N}\}$ is a martingale adapted to natural filtration for *X*, and hence from the Martingale stopping theorem, we have $\mathbb{E}Z_T = \mathbb{E}Z_1 = 0$. But

$$\mathbb{E}[Z_T] = \mathbb{E}\sum_{i=1}^T X_i - \mu \mathbb{E}T.$$

Observe that condition (iii) for Martingale stopping theorem to hold can be directly verified. Hence the result follows.