
Lecture 23 : Martingales

1 Martingales
A filtration is an increasing sequence of σ -fields, with nth σ -field denoted by Fn. A sequence X = {Xn :
n ∈ N} of random variables is said to be adapted to the filtration {Fn : n ∈ N} if Xn ∈ Fn. A discrete
stochastic process {Xn, n ∈ N} is said to be a martingale with respect to {Fn : n ∈ N} if

i E[|Xn|]< ∞,

ii Xn is adapted to Fn,

iii E[Xn+1|Fn] = Xn, for each n ∈ N.

If the equality in third condition is replaced by ≤ or ≥, then the process is called supermartingale or
submartingale, respectively. For a discrete stochastic process X = {Xn : n ∈ N}, its natural filtration is
defined as

Fn , σ(X1, . . . ,Xn).

Corollary 1.1. For a martingale X adapted to a filtration F, for each n ∈ N

EXn = EX1.

(Simple random walk). Let {Xi : i∈N} be a sequence of independent random variables with mean
EXi = 0 and E|Xi| < ∞ for each i ∈ N. Let Zn = ∑

n
i=1 Xi and Fn = σ(X1, . . . ,Xn) for each n ∈ N.

Then, {Zn, n ∈ N} is a martingale with respect to the natural filtration of X. This follows, since
EZn = 0 and

E[Zn+1|Fn] = E[Zn +Xn+1|Fn] = Zn.

(Product martingale). Let {Xi : i ∈ N} be a sequence of independent random variables with mean
EXi = 1 and E|Xi|< ∞ for each i ∈ N. Let Zn = Πn

i=1Xi and Fn = σ(X1, . . . ,Xn). Then, {Zn, n ∈ N}
is a martingale with respect to the natural filtration of X. This follows, since EZn = 1 and

E[Zn+1|Fn] = E[ZnXn+1|Fn] = Zn.

1



(Branching process). Consider a population where each individual i can produce an independent
random number of offsprings Zi in its lifetime, given by a common distribution P = {Pj : j ∈ N0}
and mean µ = ∑ j∈N jPj. Let Xn denote the size of the nth generation, which is same as number of
offsprings generated by (n− 1)th generation. The discrete stochastic process {Xn ∈ N0 : n ∈ N} is
called a branching process. Let X0 = 1 and Fn = σ(X1, . . . ,Xn), then,

Xn =
Xn−1

∑
i=1

Zi.

Conditioning on Xn−1 yields, E[Xn] = µn where µ is the mean number of offspring per individual.
Then {Yn = Xn/µn : n ∈ N} is a martingale because E[Yn] = 1 and

E[Yn+1|Fn] =
1

µn+1E[
Xn

∑
i=1

Zi|Fn] =
Xn

µn = Yn.

(Doob’s Martingale). Let X be an arbitrary random variable such that E[|X |]< ∞, and Y = {Yn :
n∈N} be an arbitrary random sequence. Let F be the natural filtration associated with the stochastic
process Y , then

Xn = E[X |Fn]

is a martingale. The integrability condition can be directly verified, and

E[Xn+1|Fn] = E[E[X |Fn+1]|Fn] = E[X |Fn] = Xn.

(Centralized Doob sequence). For any sequence of random variables X = {Xn : n ∈ N} and its
natural filtration F, the random variables Xi−E[Xi|Fi−1] have zero mean, then

Zn =
n

∑
i=1

(Xi−E[Xi|Fi−1])

is a martingale with respect to F, provided E|Zn|< ∞. To verify the same,

E[Zn+1|Fn] = E[Zn +Xn−E[Xn|Fn−1]|Fn] = Zn +E[Xn−E[Xn|Fn−1]] = Zn.

Lemma 1.2. If X = {Xn : n ∈ N} is a martingale with respect to a filtration {Fn : n ∈ N} and f is a
convex function, then { f (Xn) : n ∈ N} is a sub martigale with respect to the same filtration.

Proof. The result is a direct consequence of Jensen’s inequality.

E[ f (Xn+1)|Fn]≥ f (E[Xn+1|Fn]) = f (Xn).
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Corollary 1.3. Let a ∈ R be a constant.

i If {Xn : n ∈ N} is a submartingale, then so is {(Xn−a)+ : n ∈ N}.

ii If {Xn : n ∈ N} is a supermartingale, then so is {Xn∧a : n ∈ N}.

1.1 Stopping Times
Consider a discrete filtration F = {Fn : n ∈ N0}. A positive integer valued, possibly infinite, random
variable N is said to be a random time with respect to the filtration F, if the event {N = n} ∈ Fn for each
n∈N. If Pr{N < ∞}= 1, then the random time N is said to be a stopping time. A sequence {Hn : n∈N}
is predictable with respect to the the filtration F, if Hn ∈ Fn−1 for each n ∈ N. Further, we define

(H ·X)n ,
n

∑
m=1

Hm(Xm−Xm−1).

Theorem 1.4. Let {Xn : n ∈N0} be a super martingale with respect to a filtration F. If H = {Hn : n ∈N}
is predictable with respect to F and each Hn is non-negative and bounded, then (H · X)n is a super
martingale w.r.t. F.

Proof. It follows from the definition,

E[(H ·X)n+1|Fn] =E[Hn+1(Xn+1−Xn)+(H ·X)n|Fn] = Hn+1(E[Xn+1|Fn]−Xn)+(H ·X)n ≤ (H ·X)n.

Lemma 1.5. If {Xi : i ∈ N} is a submartingale and T is a stopping time such that Pr{T ≤ n}= 1 then

EX1 ≤ EXT ≤ EXn.

Proof. Since T is bounded, it follows from Martingale stopping theorem, that EXT ≥ EX1. Now, since T
is a stopping time, we see that for {T = k}

E[Xn1{T = k}|FT ,T = k] = E[Xn1{T = k}|Fk]≥ Xk1{T = k}= XT 1{T = k}.

Result follows by taking expectation on both sides and summing over k. That is,

EXn = E
n

∑
k=1

Xn1{T = k} ≥ E
n

∑
k=1

XT 1{T = k}= EXT .

Corollary 1.6. Let T be a stopping time and {Xn : n ∈ N} be a supermartingale, then {XT∧n : n ∈ N} os
a supermartingale.
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1.2 Stopped process
Consider a discrete stochastic process X = {Xn : n ∈ N} adapted to a discrete filtration F. Let T be a
random time for the filtration F, then the stopped process {XT∧n : n ∈ N} is defined as

XT∧n = Xn1{n≤T}+XT 1{n>T}.

Proposition 1.7. Let {Xn : n ∈ N} be a martingale with a discrete filtration F. If T is an integer random
time for the filtration F, then the stopped process {XT∧n} is a martingale.

Proof. We observe that H = {1{n ≤ T} : n ∈ N} is a non-negative, predictable, and bounded sequence,
since

{n≤ T}= {T > n−1}= {T ≤ n−1}c = (∪n−1
i=0 {T = i})c = ∩n−1

i=1 {T 6= i} ∈ Fn−1.

In terms of the predictable and bounded sequence H, we can write the stopped process as

XT∧n = X0 +
T∧n

∑
m=1

(Xm−Xm−1) = X0 +
n

∑
m=1

1{m≤ T}(Xm−Xm−1) = X0 +(H ·X)n.

Therefore from the previous theorem we have

EXT∧n = EXT∧1 = EX1.

Remark 1.8. For any martingale {Xn : n ∈N} w.r.t. F, we have EXT∧n = EX1, for all n. Now assume that
T is a stopping time w.r.t. F. It is immediate that stopped process converges almost surely to XT , i.e.

Pr
{

lim
n∈N

XT∧n = XT

}
= 1.

We are interested in knowing under what conditions will we have convergence in mean.

Theorem 1.9 (Martingale stopping theorem). Let X be a martingale and T be a stopping time adapted
to a discrete filtration F. Then, the random variable XT is integrable and the stopped process XT∧n
converges in mean to XT , i.e.

lim
n∈N

EXT∧n = EXT = EX1,

if either of the following conditions holds true.

(i) T is bounded,

(ii) XT∧n is uniformly bounded,

(iii) ET < ∞, and for some real positive K, we have supn∈NE[|Xn+1−Xn||Fn]< K.

Proof. We show this is true for all three cases.

(i) Let K be the bound on T then for all n≥ K, we have XT∧n = XT , and hence it follows that

EX1 = EXT∧n = EXT , ∀n≥ K.

(ii) Dominated convergence theorem implies the result.
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(iii) Since T is integrable and

XT∧n ≤ |X1|+KT,

we observe that XT∧n is bounded by an integrable random variable, and hence result follows from
dominated convergence theorem.

Corollary 1.10 (Wald’s Equation). If T is a stopping time for {Xi : i∈N} iid with E|X |<∞ and ET <∞,
then

E
T

∑
i=1

Xi = ETEX .

Proof. Let µ = EX . Then {Zn = ∑
n
i=1(Xi−µ) : n ∈N} is a martingale adapted to natural filtration for X ,

and hence from the Martingale stopping theorem, we have EZT = EZ1 = 0. But

E[ZT ] = E
T

∑
i=1

Xi−µET.

Observe that condition (iii) for Martingale stopping theorem to hold can be directly verified. Hence the
result follows.
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