Lecture 24: Martingale Convergence Theorem

1 Martingale Convergence Theorem

Before we state and prove martingale convergence theorem, we state some results which will be used in the proof of the theorem.

Lemma 1.1. If $\left\{X_{i}: i \in \mathbb{N}\right\}$ is a submartingale and T is a stopping time such that $\operatorname{Pr}\{T \leq n\}=1$ then

$$
\mathbb{E} X_{1} \leq \mathbb{E} X_{T} \leq \mathbb{E} X_{n}
$$

Proof. Since T is bounded, it follows from Martingale stopping theorem, that $\mathbb{E} X_{T} \geq \mathbb{E} X_{1}$. Now, since T is a stopping time, we see that for $\{T=k\}$

$$
\mathbb{E}\left[X_{n} 1\{T=k\} \mid \mathcal{F}_{T}, T=k\right]=\mathbb{E}\left[X_{n} 1\{T=k\} \mid \mathscr{F}_{k}\right] \geq X_{k} 1\{T=k\}=X_{T} 1\{T=k\} .
$$

Result follows by taking expectation on both sides and summing over k. That is,

$$
\mathbb{E} X_{n}=\mathbb{E} \sum_{k=1}^{n} X_{n} 1\{T=k\} \geq \mathbb{E} \sum_{k=1}^{n} X_{T} 1\{T=k\}=\mathbb{E} X_{T}
$$

Lemma 1.2. If $X=\left\{X_{n}: n \in \mathbb{N}\right\}$ is a martingale with respect to a filtration $\left\{\mathcal{F}_{n}: n \in \mathbb{N}\right\}$ and f is a convex function, then $\left\{f\left(X_{n}\right): n \in \mathbb{N}\right\}$ is a sub martigale with respect to the same filtration.

Proof. The result is a direct consequence of Jensen's inequality.

$$
\mathbb{E}\left[f\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right] \geq f\left(\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]\right)=f\left(X_{n}\right) .
$$

Corollary 1.3. Let $a \in \mathbb{R}$ be a constant.
i_{-}If $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a submartingale, then so is $\left\{\left(X_{n}-a\right)_{+}: n \in \mathbb{N}\right\}$.
ii_ If $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a supermartingale, then so is $\left\{X_{n} \wedge a: n \in \mathbb{N}\right\}$.
Let $X=\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ be a submartingale. Let $a<b$ and $N_{0}=-1$, and for $k \in \mathbb{N}$, we define

$$
N_{2 k-1}=\inf \left\{m>N_{2 k-2}: X_{m} \leq a\right\}, \quad N_{2 k}=\inf \left\{m>N_{2 k-1}: X_{m} \geq b\right\}
$$

The above quantities $N_{2 k-1}, N_{2 k}$ are stopping times and the set containing values of m in the transition from a to b can be defined as

$$
H_{m} \triangleq\left\{N_{2 k-1}<m \leq N_{2 k}\right\}=\left\{m-1 \geq N_{2 k-1}\right\} \cap\left\{m-1 \geq N_{2 k}\right\}^{c} \in \mathcal{F}_{m-1} .
$$

Clearly, the event of X being in an up crossing at time m is predictable. The number of up crossings completed in time n is

$$
U_{n}=\sum_{m=1}^{n} H_{m}=\sup \left\{k: n \geq N_{2 k}\right\} .
$$

Lemma 1.4 (Upcrossing inequality). If X is a submartingale, then for $Y_{n} \triangleq a+\left(X_{n}-a\right)^{+}$, we have

$$
(b-a) \mathbb{E} U_{n} \leq \mathbb{E} Y_{n}-\mathbb{E} Y_{0}
$$

Proof. Since X is a submartingale so is Y, as Y_{n} is a convex function of X_{n}. Since each up crossing has a gain slightly more than $b-a$, the following inequality exists,

$$
(b-a) U_{n} \leq(H \cdot Y)_{n}=\sum_{m=1}^{n} 1_{\left\{N_{2 k-1}<m \leq N_{2 k}\right\}}\left(Y_{m+1}-Y_{m}\right)=\sum_{k=1}^{U_{n}}\left(Y_{N_{2 k+1}}-Y_{N_{2 k+1}}\right)
$$

Now let $K_{m}=1-H_{m}$, then K is a predictable sequence, and

$$
Y_{n}-Y_{0}=(H \cdot Y)_{n}+(K \cdot Y)_{n} .
$$

From the submartingale property of Y, it follows

$$
\mathbb{E}\left[(K \cdot Y)_{n}\right] \geq \mathbb{E}\left[(K \cdot Y)_{0}\right]=0
$$

Therefore, it follows that

$$
\mathbb{E}\left(Y_{n}-Y_{0}\right)=\mathbb{E}(H \cdot Y)_{n}+\mathbb{E}(K \cdot Y)_{n} \geq \mathbb{E}(H \cdot Y)_{n} \geq(b-a) \mathbb{E} U_{n}
$$

Theorem 1.5 (Martingale convergence theorem). If $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a submartingale with $\sup _{n \in \mathbb{N}} \mathbb{E} X_{n}^{+}<$ ∞ then $\lim _{n \in \mathbb{N}} X_{n}=X$ a.s with $\mathbb{E}|X|<\infty$.

Proof. Since $(X-a)^{+} \leq X^{+}+|a|$, it follows from upcrossing inequality that

$$
\mathbb{E} U_{n} \leq \frac{\mathbb{E} X_{n}^{+}+|a|}{b-a}
$$

The number of upcrossings U_{n} increases with n, however the mean $\mathbb{E} U_{n}$ is bounded above for each $n \in \mathbb{N}$. Hence, $\lim _{n \in \mathbb{N}} \mathbb{E} U_{n}$ exists and is finite. Let $U:=\lim _{n \in \mathbb{N}} U_{n}$ and since $\mathbb{E} U \leq \mathbb{E}\left[X_{n}^{+}\right]<\infty$, we have $U<\infty$ almost surely. This conclusion leads to

$$
\operatorname{Pr}\left\{a, b \in \mathbb{Q} \cup\left\{\liminf _{n \in \mathbb{N}} X_{n}<a<b<\limsup \sup _{n \in \mathbb{N}} X_{n}\right\}\right\}=0 .
$$

From the above probability, we have almost sure equality

$$
\limsup _{n \in \mathbb{N}} X_{n}=\liminf _{n \in \mathbb{N}} X_{n}
$$

That is, the limit $\lim _{n \in \mathbb{N}} X_{n}$ exists almost surely. Fatou's lemma guarantees

$$
\mathbb{E} X^{+} \leq \liminf _{n \in \mathbb{N}} \mathbb{E} X_{n}^{+}<\infty
$$

which implies $X<\infty$ almost surely. From the submartingale property of X_{n}, it follows that

$$
\mathbb{E} X_{n}^{-}=\mathbb{E} X_{n}^{+}-\mathbb{E} X_{n} \leq \mathbb{E} X_{n}^{+}-\mathbb{E} X_{0} .
$$

From Fatou's lemma, we get

$$
\mathbb{E} X^{-} \leq \liminf _{n \in \mathbb{N}} \mathbb{E} X_{n}^{-} \leq \sup _{n \in \mathbb{N}} \mathbb{E} X_{n}^{+}-\mathbb{E} X_{0}<\infty .
$$

This implies $X>-\infty$ almost surely, completing the proof.

