
Lecture 26: Martingale Concentration Inequalities

1 Introduction
Lemma 1.1. If {Xn : n ∈ N} is a submartingale and N is a stopping time such that Pr{N ≤ n}= 1 then

EX1 ≤ EXN ≤ EXn.

Proof. It follows from optional stopping theorem that since N is bounded, E[XN ]≥ E[X1]. Now, since N
is a stopping time, we see that for {N = k}

E[Xn|X1, . . . ,XN ,N = k] = E[Xn|X1, . . . ,Xk,N = k] = E[Xn|X1, . . . ,Xk]≥ Xk = XN .

Result follows by taking expectation on both sides.

Theorem 1.2 (Kolmogorov’s inequality for submartingales). If {Xn : n ∈ N} is a submartingale, then

Pr{max{X1,X2, . . . ,Xn}> a} ≤ E[Xn]

a
, for a > 0.

Proof. We define a stopping time

N = min{i ∈ [n] : Xi > a}∧n≤ n.

It follows that, {max{X1, . . . ,Xn}> a}= {XN > a}. Using this fact and Markov inequality, we get

Pr{max{X1, . . . ,Xn}> a}= Pr{XN > a} ≤ E[XN ]

a
.

Since N ≤ n is a bounded stopping time, result follows from the previous Lemma 1.1.

Corollary 1.3. Let {Xn : n ∈ N} be a martingale. Then, for a > 0 the following hold.

Pr{max{|X1|, . . . , |Xn|}> a} ≤ E[|Xn|]
a

,

Pr{max{|X1|, . . . , |Xn|}> a} ≤ E[X2
n ]

a2 .

Proof. The proof the above statements follow from and Kolmogorov’s inequality for submartingales, and
by considering the convex functions f (x) = |x| and f (x) = x2.

Theorem 1.4 (Strong Law of Large Numbers). Let Sn be a random walk with iid step size {Xi : i ∈ N}
with finite mean µ . Then

Pr
{

lim
n∈N

Sn

n
= µ

}
= 1.
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Proof. We will prove the theorem under the assumption that the moment generating function M(t) =
E[etX ] for random variable X exists. For a given ε > 0, we define

g(t), et(µ+ε)/M(t).

Then, it is clear that g(0) = 1 and

g′(0) =
M(0)(µ + ε)−M′(0)

M2(0)
= ε > 0.

Hence, there exists a value t0 > 0 such that g(t0) > 1. We now show that Sn/n can be as large as µ + ε

only finitely often. To this end, note that{
Sn

n
≥ µ + ε

}
⊆
{

et0Sn

M(t0)n ≥ g(t0)
n
}

(1)

However, et0Sn

Mn(t0)
is a product of independent non negative random variables with unit mean, and hence is

a martingale. By martingale convergence theorem, we have

lim
n∈N

et0Sn

Mn(t0)
exists and is finite.

Since g(t0)> 1, it follows from (1) that

Pr
{

Sn

n
≥ µ + ε for an infinite number of n

}
= 0.

Similarly, defining the function f (t) = et(µ−ε)/M(t) and noting that since f (0) = 1, f ′(0) = −ε , there
exists a value t0 < 0 such that f (t0)> 1, we can prove in the same manner that

Pr
{

Sn

n
≤ µ− ε for an infinite number of n

}
= 0.

Hence, result follows from combining both these results, and taking limit of arbitrary ε decreasing to
zero.

Definition 1.5. A sequence of random variables {Xn : n ∈ N} with distribution functions {Fn : n ∈ N}, is
said to be uniformly integrable if for every ε > 0, there is a yε such that for each n ∈ N

E[|X |n1{|Xn|> yε}] =
∫
|x|>yε

|x|dFn(x)< ε.

Lemma 1.6. If {Xn : n ∈N} is uniformly integrable then there exists finite M such that E|Xn|< M for all
n ∈ N.

Proof. Let y1 be as in the definition of uniform integrability. Then

E|Xn|=
∫
|x|≤y1

|x|dFn(x)+
∫
|x|>y1

|x|dFn(x)≤ y1 +1.

2



1.1 Generalized Azuma Inequality
Lemma 1.7. For a zero mean random variable X with support [−α,β ] and any convex function f

E f (X)≤ β

α +β
f (−α)+

α

α +β
f (β ).

Proof. From convexity of f , any point (X ,Y ) on the line joining points (−α, f (−α) and (β , f (β )) is

Y = f (−α)+(X +α)
f (β )− f (−α)

β +α
≥ f (X).

Result follows from taking expectations on both sides.

Lemma 1.8. For θ ∈ [0,1] and θ̄ = 1−θ , we have

θeθ̄x + θ̄e−θx ≤ ex2/8.

Proof.

Proposition 1.9. Let {Xn : n ∈ N} be a zero-mean martingale with respect to filtration F, such that for
each n ∈ N

−α ≤ Xn−Xn−1 ≤ β .

Then, for any positive values a and b

Pr{Xn ≥ a+bn for some n} ≤ exp
(
− 8ab
(α +β )2

)
.

Proof. For n≥ 0, we define a random sequence Wn ∈ Fn, such that

Wn = exp{c(Xn−a−bn)}=Wn−1e−cb exp{c(Xn−Xn−1)}.

We will show that W is a supermartingale with respect to the filtration F. To this end, we observe

E[Wn|Fn−1] =Wn−1e−cbE[exp{c(Xn−Xn−1)}|Fn−1].

Using conditional Jensen’s inequality for convex function f (x) = ex, we obtain for θ = α/(α +β )

E[exp{c(Xn−Xn−1)}|Fn−1]≤
βe−cα +αecβ

α +β
= θ̄e−c(α+β )θ +θec(α+β )θ̄≤ec2(α+β )2/8.

The second inequality follows from previous lemma with x = c(α + β ). Fixing the value of c as c =

8b/(α +β )2 minimizes the right hand side inequality in the following, and we obtain

E[Wn|Fn−1]≤Wn−1e−cb+ c2(α+β )2
8 =Wn−1.

For a fixed positive integer k, define the bounded stopping time N by

N = min{n : either Xn ≥ a+bn or n = k}.

Now, using Markov inequality and optional stopping theorem, we get

Pr{XN ≥ a+bN}= Pr{WN ≥ 1} ≤ E[WN ]≤ E[W0].

But the above inequality is equivalent to

Pr{Xn ≥ a+bn for some n≤ k} ≤ e−8ab/(α+β )2
.

Since, the choice of k was arbitrary, result follow from letting k→ ∞.
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Theorem 1.10 (Generalized Azuma inequality). Let {Xn : n ∈ N0} be a zero-mean martingale, such
that −α ≤ Xn−Xn−1 ≤ β for all n ∈ N. Then, for any positive constant c and integer m:

Pr{Xn ≥ nc for some n≥ m} ≤ exp
(
−2mc2/(α +β )2

)
,

Pr{Xn ≤−nc for some n≥ m} ≤ exp
(
−2mc2/(α +β )2

)
.

Proof. Observe that if there is an n such that n≥ m and Xn ≥ nc then for that n,Xn ≥ nc≥ mc/2+nc/2.
Using this fact and previous proposition for a = mc/2 and b = c/2, we get

Pr{Xn ≥ nc for some n≥ m} ≤ Pr{Xn ≥ mc/2+(c/2)n for some n} ≤ exp
{
−8(mc/2)(c/2)

(α +β )2

}
.

This proves first inequality, and second inequality follows by considering the martingale {−Xn : n ∈
N0}.
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