Lecture 26: Martingale Concentration Inequalities

1 Introduction

Lemma 1.1. If $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a submartingale and N is a stopping time such that $\operatorname{Pr}\{N \leq n\}=1$ then

$$
\mathbb{E} X_{1} \leq \mathbb{E} X_{N} \leq \mathbb{E} X_{n}
$$

Proof. It follows from optional stopping theorem that since N is bounded, $\mathbb{E}\left[X_{N}\right] \geq \mathbb{E}\left[X_{1}\right]$. Now, since N is a stopping time, we see that for $\{N=k\}$

$$
\mathbb{E}\left[X_{n} \mid X_{1}, \ldots, X_{N}, N=k\right]=\mathbb{E}\left[X_{n} \mid X_{1}, \ldots, X_{k}, N=k\right]=\mathbb{E}\left[X_{n} \mid X_{1}, \ldots, X_{k}\right] \geq X_{k}=X_{N} .
$$

Result follows by taking expectation on both sides.
Theorem 1.2 (Kolmogorov's inequality for submartingales). If $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a submartingale, then

$$
\operatorname{Pr}\left\{\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}>a\right\} \leq \frac{\mathbb{E}\left[X_{n}\right]}{a}, \text { for } a>0
$$

Proof. We define a stopping time

$$
N=\min \left\{i \in[n]: X_{i}>a\right\} \wedge n \leq n .
$$

It follows that, $\left\{\max \left\{X_{1}, \ldots, X_{n}\right\}>a\right\}=\left\{X_{N}>a\right\}$. Using this fact and Markov inequality, we get

$$
\operatorname{Pr}\left\{\max \left\{X_{1}, \ldots, X_{n}\right\}>a\right\}=\operatorname{Pr}\left\{X_{N}>a\right\} \leq \frac{\mathbb{E}\left[X_{N}\right]}{a}
$$

Since $N \leq n$ is a bounded stopping time, result follows from the previous Lemma 1.1
Corollary 1.3. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a martingale. Then, for $a>0$ the following hold.

$$
\begin{aligned}
& \operatorname{Pr}\left\{\max \left\{\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right\}>a\right\} \leq \frac{\mathbb{E}\left[\left|X_{n}\right|\right]}{a}, \\
& \operatorname{Pr}\left\{\max \left\{\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right\}>a\right\} \leq \frac{\mathbb{E}\left[X_{n}^{2}\right]}{a^{2}}
\end{aligned}
$$

Proof. The proof the above statements follow from and Kolmogorov's inequality for submartingales, and by considering the convex functions $f(x)=|x|$ and $f(x)=x^{2}$.

Theorem 1.4 (Strong Law of Large Numbers). Let S_{n} be a random walk with iid step size $\left\{X_{i}: i \in \mathbb{N}\right\}$ with finite mean μ. Then

$$
\operatorname{Pr}\left\{\lim _{n \in \mathbb{N}} \frac{S_{n}}{n}=\mu\right\}=1 .
$$

Proof. We will prove the theorem under the assumption that the moment generating function $M(t)=$ $\mathbb{E}\left[e^{t X}\right]$ for random variable X exists. For a given $\varepsilon>0$, we define

$$
g(t) \triangleq e^{t(\mu+\varepsilon)} / M(t)
$$

Then, it is clear that $g(0)=1$ and

$$
g^{\prime}(0)=\frac{M(0)(\mu+\varepsilon)-M^{\prime}(0)}{M^{2}(0)}=\varepsilon>0
$$

Hence, there exists a value $t_{0}>0$ such that $g\left(t_{0}\right)>1$. We now show that S_{n} / n can be as large as $\mu+\varepsilon$ only finitely often. To this end, note that

$$
\begin{equation*}
\left\{\frac{S_{n}}{n} \geq \mu+\varepsilon\right\} \subseteq\left\{\frac{e^{t_{0} S_{n}}}{M\left(t_{0}\right)^{n}} \geq g\left(t_{0}\right)^{n}\right\} \tag{1}
\end{equation*}
$$

However, $\frac{e^{t_{0}} S_{n}}{M^{n}\left(t_{0}\right)}$ is a product of independent non negative random variables with unit mean, and hence is a martingale. By martingale convergence theorem, we have

$$
\lim _{n \in \mathbb{N}} \frac{e^{t_{0} S_{n}}}{M^{n}\left(t_{0}\right)} \text { exists and is finite. }
$$

Since $g\left(t_{0}\right)>1$, it follows from (1) that

$$
\operatorname{Pr}\left\{\frac{S_{n}}{n} \geq \mu+\varepsilon \text { for an infinite number of } \mathrm{n}\right\}=0
$$

Similarly, defining the function $f(t)=e^{t(\mu-\varepsilon)} / M(t)$ and noting that since $f(0)=1, f^{\prime}(0)=-\varepsilon$, there exists a value $t_{0}<0$ such that $f\left(t_{0}\right)>1$, we can prove in the same manner that

$$
\operatorname{Pr}\left\{\frac{S_{n}}{n} \leq \mu-\varepsilon \text { for an infinite number of } \mathrm{n}\right\}=0
$$

Hence, result follows from combining both these results, and taking limit of arbitrary ε decreasing to zero.

Definition 1.5. A sequence of random variables $\left\{X_{n}: n \in \mathbb{N}\right\}$ with distribution functions $\left\{F_{n}: n \in \mathbb{N}\right\}$, is said to be uniformly integrable if for every $\varepsilon>0$, there is a y_{ε} such that for each $n \in \mathbb{N}$

$$
\mathbb{E}\left[|X|_{n} 1\left\{\left|X_{n}\right|>y_{\varepsilon}\right\}\right]=\int_{|x|>y_{\varepsilon}}|x| d F_{n}(x)<\varepsilon .
$$

Lemma 1.6. If $\left\{X_{n}: n \in \mathbb{N}\right\}$ is uniformly integrable then there exists finite M such that $\mathbb{E}\left|X_{n}\right|<M$ for all $n \in \mathbb{N}$.

Proof. Let y_{1} be as in the definition of uniform integrability. Then

$$
\mathbb{E}\left|X_{n}\right|=\int_{|x| \leq y_{1}}|x| d F_{n}(x)+\int_{|x|>y_{1}}|x| d F_{n}(x) \leq y_{1}+1
$$

1.1 Generalized Azuma Inequality

Lemma 1.7. For a zero mean random variable X with support $[-\alpha, \beta]$ and any convex function f

$$
\mathbb{E} f(X) \leq \frac{\beta}{\alpha+\beta} f(-\alpha)+\frac{\alpha}{\alpha+\beta} f(\beta)
$$

Proof. From convexity of f, any point (X, Y) on the line joining points $(-\alpha, f(-\alpha)$ and $(\beta, f(\beta))$ is

$$
Y=f(-\alpha)+(X+\alpha) \frac{f(\beta)-f(-\alpha)}{\beta+\alpha} \geq f(X)
$$

Result follows from taking expectations on both sides.
Lemma 1.8. For $\theta \in[0,1]$ and $\bar{\theta}=1-\theta$, we have

$$
\theta e^{\bar{\theta} x}+\bar{\theta} e^{-\theta x} \leq e^{x^{2} / 8}
$$

Proof.
Proposition 1.9. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a zero-mean martingale with respect to filtration \mathcal{F}, such that for each $n \in \mathbb{N}$

$$
-\alpha \leq X_{n}-X_{n-1} \leq \beta
$$

Then, for any positive values a and b

$$
\operatorname{Pr}\left\{X_{n} \geq a+\text { bn for some } n\right\} \leq \exp \left(-\frac{8 a b}{(\alpha+\beta)^{2}}\right)
$$

Proof. For $n \geq 0$, we define a random sequence $W_{n} \in \mathcal{F}_{n}$, such that

$$
W_{n}=\exp \left\{c\left(X_{n}-a-b n\right)\right\}=W_{n-1} e^{-c b} \exp \left\{c\left(X_{n}-X_{n-1}\right)\right\} .
$$

We will show that W is a supermartingale with respect to the filtration \mathcal{F}. To this end, we observe

$$
\mathbb{E}\left[W_{n} \mid \mathcal{F}_{n-1}\right]=W_{n-1} e^{-c b} \mathbb{E}\left[\exp \left\{c\left(X_{n}-X_{n-1}\right)\right\} \mid \mathscr{F}_{n-1}\right] .
$$

Using conditional Jensen's inequality for convex function $f(x)=e^{x}$, we obtain for $\theta=\alpha /(\alpha+\beta)$

$$
\mathbb{E}\left[\exp \left\{c\left(X_{n}-X_{n-1}\right)\right\} \mid \mathcal{F}_{n-1}\right] \leq \frac{\beta e^{-c \alpha}+\alpha e^{c \beta}}{\alpha+\beta}=\bar{\theta} e^{-c(\alpha+\beta) \theta}+\theta e^{c(\alpha+\beta) \bar{\theta}} \leq e^{c^{2}(\alpha+\beta)^{2} / 8}
$$

The second inequality follows from previous lemma with $x=c(\alpha+\beta)$. Fixing the value of c as $c=$ $8 b /(\alpha+\beta)^{2}$ minimizes the right hand side inequality in the following, and we obtain

$$
\mathbb{E}\left[W_{n} \mid \mathcal{F}_{n-1}\right] \leq W_{n-1} e^{-c b+\frac{c^{2}(\alpha+\beta)^{2}}{8}}=W_{n-1}
$$

For a fixed positive integer k, define the bounded stopping time N by

$$
N=\min \left\{n: \text { either } X_{n} \geq a+b n \text { or } n=k\right\} .
$$

Now, using Markov inequality and optional stopping theorem, we get

$$
\operatorname{Pr}\left\{X_{N} \geq a+b N\right\}=\operatorname{Pr}\left\{W_{N} \geq 1\right\} \leq \mathbb{E}\left[W_{N}\right] \leq \mathbb{E}\left[W_{0}\right]
$$

But the above inequality is equivalent to

$$
\operatorname{Pr}\left\{X_{n} \geq a+b n \text { for some } n \leq k\right\} \leq e^{-8 a b /(\alpha+\beta)^{2}}
$$

Since, the choice of k was arbitrary, result follow from letting $k \rightarrow \infty$.

Theorem 1.10 (Generalized Azuma inequality). Let $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ be a zero-mean martingale, such that $-\alpha \leq X_{n}-X_{n-1} \leq \beta$ for all $n \in \mathbb{N}$. Then, for any positive constant c and integer m :

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{n} \geq n c \text { for some } n \geq m\right\} & \leq \exp \left(-2 m c^{2} /(\alpha+\beta)^{2}\right) \\
\operatorname{Pr}\left\{X_{n} \leq-n c \text { for some } n \geq m\right\} & \leq \exp \left(-2 m c^{2} /(\alpha+\beta)^{2}\right)
\end{aligned}
$$

Proof. Observe that if there is an n such that $n \geq m$ and $X_{n} \geq n c$ then for that $n, X_{n} \geq n c \geq m c / 2+n c / 2$. Using this fact and previous proposition for $a=m c / 2$ and $b=c / 2$, we get

$$
\operatorname{Pr}\left\{X_{n} \geq n c \text { for some } n \geq m\right\} \leq \operatorname{Pr}\left\{X_{n} \geq m c / 2+(c / 2) n \text { for some } n\right\} \leq \exp \left\{-\frac{8(m c / 2)(c / 2)}{(\alpha+\beta)^{2}}\right\}
$$

This proves first inequality, and second inequality follows by considering the martingale $\left\{-X_{n}: n \in\right.$ $\left.\mathbb{N}_{0}\right\}$ 。

