Lecture 27: Random Walks

1 Introduction

Let $X=\left\{X_{n}: n \in \mathbb{N}\right\}$ be a sequence of iid random variables with $\mathbb{E}\left|X_{n}\right|<\infty$. Let $S_{0}=0$ and $S_{n}=\sum_{i=1}^{n} X_{i}$. Then the sequence $S=\left\{S_{n}: n \in \mathbb{N}_{0}\right\}$ is called a random walk process.

Example 1.1 (Simple random walk). Let $X_{i} \in\{-1,1\}$ and $\operatorname{Pr}\left\{X_{i}=1\right\}=p$, then random walk S is called a simple random walk.

Example 1.2. Stock prices each day can be modeled by a random walk.

Random walks are generalizations of renewal processes. If X was a sequence of non-negative random variables indicating inter-renewal times, then S_{n} is the instant of the nth renewal event.

2 Duality in random walks

Lemma 2.1 (Duality principle). For any finite $n \in \mathbb{N}$, the joint distributions of finite sequence $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ and the reversed sequence $\left(X_{n}, X_{n-1}, \cdots, X_{1}\right)$ are identical.

Proof. Since X is a sequence of iid random variables, it is exchangeable. The reversed sequence is $\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)$ where $\pi:[n] \rightarrow[n]$ is permutation with $\pi(i)=n-i+1$.

Corollary 2.2. Distribution of S_{k} and $S_{n}-S_{n-k}$ are identical for any $k \in[n]$.
Proof. Using duality principle, we can write the following equality for any $x \in \mathbb{R}, k \in[n]$

$$
\operatorname{Pr}\left\{S_{k} \leq x\right\}=\operatorname{Pr}\left\{\sum_{i=1}^{k} X_{i} \leq x\right\}=\operatorname{Pr}\left\{\sum_{i=1}^{k} X_{n-i+1} \leq x\right\}=\operatorname{Pr}\left\{\sum_{i=n-k+1}^{n} X_{i} \leq x\right\}=\operatorname{Pr}\left\{S_{n}-S_{n-k} \leq x\right\} .
$$

Proposition 2.3. Suppose $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a sequence of iid random variables with positive mean. Let $S_{n}=\sum_{k=1}^{n} X_{i}$ be a random walk with step size X_{n}. If $N=\min \left\{n \in \mathbb{N}: S_{n}>0\right\}$, then $\mathbb{E} N<\infty$.

Proof. Consider a discrete process $\left\{T_{k} \in \mathbb{N}_{0}: k \in \mathbb{N}_{0}\right\}$, where $T_{0}=0$ and for each $k \in \mathbb{N}_{0}$

$$
T_{k+1}=\inf \left\{n>T_{k}: S_{n} \leq S_{N_{k}}\right\}=N_{k}+\inf \left\{n \in \mathbb{N}: S_{N_{k}+n} \leq S_{N_{k}}\right\}
$$

Since for any finite $n \in \mathbb{N}$, the distribution of $\left(X_{1}, \ldots, X_{n}\right)$ is identical to that of $\left(X_{T_{k}+1}, \ldots, X_{T_{k}+n}\right)$, and

$$
T_{k+1}-T_{k}=\inf \left\{n \in \mathbb{N}: \sum_{i=1}^{n} X_{T_{k}+i} \leq 0\right\},
$$

we observe that $T_{k}-T_{k-1}$ are iid for each $k \in \mathbb{N}$, with complementary distribution

$$
\bar{F}(m)=\operatorname{Pr}\left\{T_{k+1}-T_{k}>m\right\}=\operatorname{Pr}\left\{S_{1}>0, S_{2}>0, \ldots, S_{m}>0\right\} .
$$

Therefore, $\left\{T_{k}: k \in \mathbb{N}_{0}\right\}$ is a renewal process and at each renewal instant $\left\{T_{k}=n\right\}$,

$$
S_{n} \leq S_{n-1}, S_{n} \leq S_{n-2}, \ldots, S_{n} \leq 0
$$

Hence, T_{k} denotes the k th renewal instant corresponding to the random walk S_{n} hitting k th low. We can define the inverse counting process $\left\{N_{n} \in \mathbb{N}_{0}: n \in \mathbb{N}_{0}\right\}$ for this renewal process as

$$
N_{n}=\sum_{j=1}^{n} 1_{\left\{T_{j} \leq n\right\}}, \quad \text { or }\left\{N_{n} \geq k\right\}=\left\{T_{k} \leq n\right\}
$$

From definition of stopping time N and duality principle, we can write

$$
\operatorname{Pr}\{N>n\}=\operatorname{Pr}\left\{S_{1} \leq 0, \ldots, S_{n} \leq 0\right\}=\operatorname{Pr}\left\{S_{n} \leq S_{n-1}, \ldots, S_{n} \leq 0\right\}
$$

The event of renewal process hitting a new low at n is same as some renewal occurring at time n. That is,

$$
\sum_{n \in \mathbb{N}} 1_{\left\{S_{n} \leq S_{n-1}, S_{n} \leq S_{n-2}, \ldots, S_{n} \leq S_{0}\right\}}=\sum_{n \in \mathbb{N}} \sum_{k=1}^{n} 1_{\left\{T_{k}=n\right\}}=\sum_{k \in \mathbb{N}} \sum_{n \geq k} 1_{\left\{T_{k}=n\right\}}=\sum_{k \in \mathbb{N}} 1_{\left\{T_{k} \leq \infty\right\}}=N_{\infty} .
$$

Therefore, we can write the mean of stopping time N as

$$
\mathbb{E} N=1+\sum_{n \in \mathbb{N}} \operatorname{Pr}\{N>n\}=1+\sum_{n \in \mathbb{N}} \sum_{k=1}^{n} \operatorname{Pr}\left\{T_{k}=n\right\}=1+\sum_{k \in \mathbb{N}} \sum_{n \geq k} \operatorname{Pr}\left\{T_{k}=n\right\}=1+\mathbb{E} N_{\infty} .
$$

Since $\mathbb{E} X_{1}>0$, it follows from strong law of large numbers that $S_{n} \rightarrow \infty$. Hence, the expected number of renewals that occur is finite. Thus $\mathbb{E} N<\infty$.

The number of distinct values of $\left(S_{0}, \cdots, S_{n}\right)$ is called range, denoted by R_{n} We define by stopping time T_{k}, first return of random walk to k

$$
T_{k}=\inf \left\{n \in \mathbb{N}: S_{n}=k\right\}
$$

Proposition 2.4. For a simple random walk,

$$
\lim _{n \in \mathbb{N}} \frac{\mathbb{E} R_{n}}{n}=\operatorname{Pr}\left\{T_{0}>\infty\right\}
$$

Proof. We can define indicator function for S_{k} being a distinct number from S_{1}, \ldots, S_{k-1}, as

$$
I_{k}=1_{\left\{S_{k} \neq S_{k-1}, \ldots, S_{k} \neq S_{1}\right\}}
$$

Then, we can write range R_{n} in terms of indicator I_{k} as

$$
R_{n}=1+\sum_{k=1}^{n} I_{k}
$$

Further, using the duality principle, we can write

$$
\mathbb{E} R_{n}=1+\sum_{k=1}^{n} \operatorname{Pr}\left\{S_{1} \neq 0, \ldots, S_{k} \neq 0\right\}=\sum_{k=0}^{n} \operatorname{Pr}\left\{T_{0}>k\right\}
$$

Result follows by dividing both sides by n and taking limits.

2.1 Simple random walk

Theorem 2.5 (range). For a simple random walk with $\operatorname{Pr}\left\{X_{1}=1\right\}=p$, the following holds

$$
\lim _{n \in \mathbb{N}} \frac{\mathbb{E} R_{n}}{n}= \begin{cases}2 p-1, & p>\frac{1}{2} \\ 2(1-p)-1, & p \leq \frac{1}{2}\end{cases}
$$

Proof. When $p=\frac{1}{2}$, this random walk is recurrent and thus

$$
\operatorname{Pr}\left\{T_{0}>\infty\right\}=0=\lim _{n \in \mathbb{N}} \frac{\mathbb{E} R_{n}}{n}
$$

For $p>\frac{1}{2}$, let $\alpha=\operatorname{Pr}\left\{T_{0}<\infty \mid X_{1}=1\right\}$. Since $\mathbb{E} X>0$, we know that $S_{n} \rightarrow \infty$ and hence $\operatorname{Pr}\left\{T_{0}<\infty \mid X_{1}=\right.$ $-1\}=1$. We can write unconditioned probability of return of random walk to 0 as

$$
\operatorname{Pr}\left\{T_{0}<\infty\right\}=\alpha p+1-p
$$

Conditioning on X_{2} and from strong law of large numbers, we yield

$$
\alpha=\operatorname{Pr}\left\{T_{0}<\infty \mid X_{1}=1\right\}=p \operatorname{Pr}\left\{T_{0}<\infty \mid S_{2}=2\right\}+(1-p) .
$$

From Markov property and homogeneity of random walk process, it follows that

$$
\operatorname{Pr}\left\{T_{0}<\infty \mid S_{2}=2\right\}=\operatorname{Pr}\left\{T_{0}<\infty \mid S_{T_{1}}=1, T_{1}<\infty\right\} \operatorname{Pr}\left\{T_{1}<\infty \mid S_{2}=2\right\}=\alpha^{2} .
$$

We conclude $\alpha=\alpha^{2} p+1-p$, and since $\alpha<1$ due to transience, we get $\alpha=\frac{1-p}{p}$, and hence the result follows. We can show similarly for the case when $p<1 / 2$.

