
Lecture 28: Random walks

1 GI/GI/1 Queueing Model
Consider a GI/GI/1 queue. Customers arrive in accordance with a renewal process having an arbitrary
interarrival distribution F , and the service distribution G.

Proposition 1.1. Let Dn be the delay in the queue of the nth customer in a GI/GI/1 queue with independent
inter-arrival times Xn and service times Yn. Let Sn be a random walk with iid steps Un =Yn−Xn+1 for all
n ∈ N. Then, we can write

Pr{Dn+1 ≥ c}= Pr{S j ≥ c, for some j ∈ [n]}. (1)

Proof. The following recursion for Dn is easy to verify

Dn+1 = (Dn +Yn−Xn+1)1{Dn+Yn−Xn+1≥0} = max{0,Dn +Un}.

Iterating the above relation with D1 = 0 yields

Dn+1 = max{0,Un +max{0,Dn−1 +Un−1}}= max{0,Un,Un +Un−1 +Dn−1}.

For the random walk Sn with steps Un, we can write delay in terms of random walk Sn as

Dn+1 = max{0,Sn−Sn−1,Sn−Sn−2, . . . ,Sn−S0}.

Using the duality principle, we can rewrite the following equality for delay in distribution

Dn+1 = max{0,S1,S2, . . . ,Sn}.

Corollary 1.2. If EUn ≥ 0, then for all c, we have Pr{D∞ ≥ c}, limn∈N Pr{Dn ≥ c}= 1.

Proof. It follows from Proposition 1.1 that Pr{Dn+1 ≥ c} is nondecreasing in n. Hence, by MCT the limit
exists and is denoted by Pr{D∞ ≥ c} = limn∈N Pr{Dn ≥ c}. Therefore, by continuity of probability, we
have from (1), that

Pr{D∞ ≥ c}= Pr{Sn ≥ c for some n}. (2)

If EUn = EYn−EXn+1 is positive, then by strong law of large numbers the random walk Sn will converge
to positive infinity with probability 1. The above will also be true when E[Un] = 0, then the random walk
is recurrent.

Remark 1.3. Hence, we get that EYn < EXn+1 implies the existence of a stationary distribution.
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Proposition 1.4 (Spitzer’s Identity). Let Mn = max{0,S1,S2, . . . ,Sn} for n ∈ N, then

EMn =
n

∑
k=1

1
k
ES+k .

Proof. We can decompose Mn as

Mn = 1{Sn>0}Mn +1{Sn≤0}Mn.

We can rewrite first term in decomposition as,

1{Sn>0}Mn = 1{Sn>0}max
i∈[n]

Si = 1{Sn>0}(X1 +max{0,S2−S1, . . . ,Sn−S1})

Hence, taking expectation and using exchangeability, we get

E[Mn1{Sn>0}] = E[X11{Sn>0}]+E[Mn−11{Sn>0}].

Since Xi,Sn has the same joint distribution for all i,

ES+n = E[Sn1{Sn>0}] = E
n

∑
i=1

Xi1{Sn>0}] = nE[X11{Sn>0}].

Therefore, it follows that

E[1{Sn>0}Mn] = E[1{Sn>0}Mn−1]+
1
n
E[S+n ].

Also, Sn ≤ 0 implies that Mn = Mn−1, it follows that

1{Sn≤0}Mn = 1{Sn≤0}Mn−1.

Thus, we obtain the following recursion,

E[Mn] = E[Mn−1]+
1
n
E[S+n ].

Result follow from the fact that M1 = S+1 .

Remark 1.5. Since Dn+1 = Mn, we have E[Dn+1] = E[Mn] = ∑
n
k=1

1
k E[S+k ].

2 Martingales for Random Walks
Proposition 2.1. A random walk Sn with step size Xn ∈ [−M,M]∩Z for some finite M is a recurrent
DTMC iff EX = 0.

Proof. If EX 6= 0, the random walk is clearly transient since, it will diverge to ±∞ depending on the sign
of EX . Conversely, if EX = 0, then Sn is a martingale. Assume that the process starts in state i. We define

A = {−M,−M+1, · · · ,−2,−1}, A j = { j+1, . . . , j+M}, j > i.

Let N denote the hitting time to A or A j by random walk Sn. Since N is a stopping time and SN∧n≤ |M|+ j,
by optional stopping theorem, we have

Ei[SN ] = Ei[S0] = i.
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Thus we have

i = Ei[SN ]≥−MPi{SN ∈ A}+ j(1−Pi{SN ∈ A}).

Rearranging this, we get a bound on probability of random walk Sn hitting A over A j as

Pi{Sn ∈ A for some n} ≥ Pi{SN ∈ A} ≥ j− i
j+M

.

Taking limit j→ ∞, we see that for any i ≥ 0, we have Pi{Sn ∈ A for some n} = 1. Similarly, taking
B = {1,2, · · · ,M}, we can show that for any i ≥ 0, Pi{Sn ∈ B for some n} = 1. Result follows from
combining the above two arguments to see that for any i≥ 0,

Pi{Sn ∈ A∪B for some n}= 1.

Proposition 2.2. Consider a random walk Sn with mean step size E[X ] 6= 0. For A,B > 0, let PA denote
the probability that the walk hits a value greater than A before it hits a value less than −B. Then, for
θ 6= 0 such that EeθX1 = 1, we have

PA ≈
1− e−θB

eθA− e−θB .

Approximation is an equality when step size is unity and A and B are integer valued.

Proof. For any A,B > 0, we can define stopping times

TA = inf{n ∈ N : Sn ≥ a}, T−B = inf{n ∈ N : Sn ≤−B}.

We are interested in computing the probability

PA = Pr{TA < T−B}.

Now let Zn = eθSn . We can see that Zn is a martingale with mean 1. Define a stopping time N = TA∧T−B.
From Doob’s Theorem, E[eSN ] = 1. Thus we get

1 = E[eθSN |SN ≥ A]PA +E[eθSN |SN ≤−B](1−PA).

We can obtain an approximation for PA by neglecting the overshoots past A or −B. Thus we get

E[eθSN |SN ≥ A]≈ eθA, E[eθSN |SN ≤−B]≈ e−θB.

The result follows.
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