Lecture 28: Random walks

1 GI/GI/1 Queueing Model

Consider a $G I / G I / 1$ queue. Customers arrive in accordance with a renewal process having an arbitrary interarrival distribution F, and the service distribution G.

Proposition 1.1. Let D_{n} be the delay in the queue of the $n^{\text {th }}$ customer in a GI/GI/l queue with independent inter-arrival times X_{n} and service times Y_{n}. Let S_{n} be a random walk with iid steps $U_{n}=Y_{n}-X_{n+1}$ for all $n \in \mathbb{N}$. Then, we can write

$$
\begin{equation*}
\operatorname{Pr}\left\{D_{n+1} \geq c\right\}=\operatorname{Pr}\left\{S_{j} \geq c, \text { for some } j \in[n]\right\} . \tag{1}
\end{equation*}
$$

Proof. The following recursion for D_{n} is easy to verify

$$
D_{n+1}=\left(D_{n}+Y_{n}-X_{n+1}\right) 1_{\left\{D_{n}+Y_{n}-X_{n+1} \geq 0\right\}}=\max \left\{0, D_{n}+U_{n}\right\} .
$$

Iterating the above relation with $D_{1}=0$ yields

$$
D_{n+1}=\max \left\{0, U_{n}+\max \left\{0, D_{n-1}+U_{n-1}\right\}\right\}=\max \left\{0, U_{n}, U_{n}+U_{n-1}+D_{n-1}\right\} .
$$

For the random walk S_{n} with steps U_{n}, we can write delay in terms of random walk S_{n} as

$$
D_{n+1}=\max \left\{0, S_{n}-S_{n-1}, S_{n}-S_{n-2}, \ldots, S_{n}-S_{0}\right\}
$$

Using the duality principle, we can rewrite the following equality for delay in distribution

$$
D_{n+1}=\max \left\{0, S_{1}, S_{2}, \ldots, S_{n}\right\} .
$$

Corollary 1.2. If $\mathbb{E} U_{n} \geq 0$, then for all c, we have $\operatorname{Pr}\left\{D_{\infty} \geq c\right\} \triangleq \lim _{n \in \mathbb{N}} \operatorname{Pr}\left\{D_{n} \geq c\right\}=1$.
Proof. It follows from Proposition 1.1 that $\operatorname{Pr}\left\{D_{n+1} \geq c\right\}$ is nondecreasing in n. Hence, by MCT the limit exists and is denoted by $\operatorname{Pr}\left\{D_{\infty} \geq c\right\}=\lim _{n \in \mathbb{N}} \operatorname{Pr}\left\{D_{n} \geq c\right\}$. Therefore, by continuity of probability, we have from (1), that

$$
\begin{equation*}
\operatorname{Pr}\left\{D_{\infty} \geq c\right\}=\operatorname{Pr}\left\{S_{n} \geq c \text { for some } n\right\} \tag{2}
\end{equation*}
$$

If $\mathbb{E} U_{n}=\mathbb{E} Y_{n}-\mathbb{E} X_{n+1}$ is positive, then by strong law of large numbers the random walk S_{n} will converge to positive infinity with probability 1 . The above will also be true when $E\left[U_{n}\right]=0$, then the random walk is recurrent.

Remark 1.3. Hence, we get that $\mathbb{E} Y_{n}<\mathbb{E} X_{n+1}$ implies the existence of a stationary distribution.

Proposition 1.4 (Spitzer's Identity). Let $M_{n}=\max \left\{0, S_{1}, S_{2}, \ldots, S_{n}\right\}$ for $n \in \mathbb{N}$, then

$$
\mathbb{E} M_{n}=\sum_{k=1}^{n} \frac{1}{k} \mathbb{E} S_{k}^{+}
$$

Proof. We can decompose M_{n} as

$$
M_{n}=1_{\left\{S_{n}>0\right\}} M_{n}+1_{\left\{S_{n} \leq 0\right\}} M_{n} .
$$

We can rewrite first term in decomposition as,

$$
1_{\left\{S_{n}>0\right\}} M_{n}=1_{\left\{S_{n}>0\right\}} \max _{i \in[n]} S_{i}=1_{\left\{S_{n}>0\right\}}\left(X_{1}+\max \left\{0, S_{2}-S_{1}, \ldots, S_{n}-S_{1}\right\}\right)
$$

Hence, taking expectation and using exchangeability, we get

$$
\mathbb{E}\left[M_{n} 1_{\left\{S_{n}>0\right\}}\right]=\mathbb{E}\left[X_{1} 1_{\left\{S_{n}>0\right\}}\right]+\mathbb{E}\left[M_{n-1} 1_{\left\{S_{n}>0\right\}}\right] .
$$

Since X_{i}, S_{n} has the same joint distribution for all i,

$$
\left.\mathbb{E} S_{n}^{+}=\mathbb{E}\left[S_{n} 1_{\left\{S_{n}>0\right\}}\right]=\mathbb{E} \sum_{i=1}^{n} X_{i} 1_{\left\{S_{n}>0\right\}}\right]=n \mathbb{E}\left[X_{1} 1_{\left\{S_{n}>0\right\}}\right] .
$$

Therefore, it follows that

$$
\mathbb{E}\left[1_{\left\{S_{n}>0\right\}} M_{n}\right]=\mathbb{E}\left[1_{\left\{S_{n}>0\right\}} M_{n-1}\right]+\frac{1}{n} \mathbb{E}\left[S_{n}^{+}\right] .
$$

Also, $S_{n} \leq 0$ implies that $M_{n}=M_{n-1}$, it follows that

$$
1_{\left\{S_{n} \leq 0\right\}} M_{n}=1_{\left\{S_{n} \leq 0\right\}} M_{n-1} .
$$

Thus, we obtain the following recursion,

$$
\mathbb{E}\left[M_{n}\right]=\mathbb{E}\left[M_{n-1}\right]+\frac{1}{n} \mathbb{E}\left[S_{n}^{+}\right] .
$$

Result follow from the fact that $M_{1}=S_{1}^{+}$.
Remark 1.5. Since $D_{n+1}=M_{n}$, we have $\mathbb{E}\left[D_{n+1}\right]=\mathbb{E}\left[M_{n}\right]=\sum_{k=1}^{n} \frac{1}{k} E\left[S_{k}^{+}\right]$.

2 Martingales for Random Walks

Proposition 2.1. A random walk S_{n} with step size $X_{n} \in[-M, M] \cap \mathbb{Z}$ for some finite M is a recurrent DTMC iff $\mathbb{E} X=0$.

Proof. If $\mathbb{E} X \neq 0$, the random walk is clearly transient since, it will diverge to $\pm \infty$ depending on the sign of $\mathbb{E} X$. Conversely, if $\mathbb{E} X=0$, then S_{n} is a martingale. Assume that the process starts in state i. We define

$$
A=\{-M,-M+1, \cdots,-2,-1\}, \quad A_{j}=\{j+1, \ldots, j+M\}, j>i
$$

Let N denote the hitting time to A or A_{j} by random walk S_{n}. Since N is a stopping time and $S_{N \wedge n} \leq|M|+j$, by optional stopping theorem, we have

$$
\mathbb{E}_{i}\left[S_{N}\right]=\mathbb{E}_{i}\left[S_{0}\right]=i
$$

Thus we have

$$
i=\mathbb{E}_{i}\left[S_{N}\right] \geq-M \mathbb{P}_{i}\left\{S_{N} \in A\right\}+j\left(1-\mathbb{P}_{i}\left\{S_{N} \in A\right\}\right)
$$

Rearranging this, we get a bound on probability of random walk S_{n} hitting A over A_{j} as

$$
\mathbb{P}_{i}\left\{S_{n} \in A \text { for some } n\right\} \geq \mathbb{P}_{i}\left\{S_{N} \in A\right\} \geq \frac{j-i}{j+M}
$$

Taking limit $j \rightarrow \infty$, we see that for any $i \geq 0$, we have $\mathbb{P}_{i}\left\{S_{n} \in A\right.$ for some $\left.n\right\}=1$. Similarly, taking $B=\{1,2, \cdots, M\}$, we can show that for any $i \geq 0, \mathbb{P}_{i}\left\{S_{n} \in B\right.$ for some $\left.n\right\}=1$. Result follows from combining the above two arguments to see that for any $i \geq 0$,

$$
\mathbb{P}_{i}\left\{S_{n} \in A \cup B \text { for some } n\right\}=1
$$

Proposition 2.2. Consider a random walk S_{n} with mean step size $\mathbb{E}[X] \neq 0$. For $A, B>0$, let P_{A} denote the probability that the walk hits a value greater than A before it hits a value less than $-B$. Then, for $\theta \neq 0$ such that $\mathbb{E} e^{\theta X_{1}}=1$, we have

$$
P_{A} \approx \frac{1-e^{-\theta B}}{e^{\theta A}-e^{-\theta B}}
$$

Approximation is an equality when step size is unity and A and B are integer valued.
Proof. For any $A, B>0$, we can define stopping times

$$
T_{A}=\inf \left\{n \in \mathbb{N}: S_{n} \geq a\right\}, \quad T_{-B}=\inf \left\{n \in \mathbb{N}: S_{n} \leq-B\right\}
$$

We are interested in computing the probability

$$
P_{A}=\operatorname{Pr}\left\{T_{A}<T_{-B}\right\}
$$

Now let $Z_{n}=e^{\theta S_{n}}$. We can see that Z_{n} is a martingale with mean 1. Define a stopping time $N=T_{A} \wedge T_{-B}$. From Doob's Theorem, $\mathbb{E}\left[e^{S_{N}}\right]=1$. Thus we get

$$
1=\mathbb{E}\left[e^{\theta S_{N}} \mid S_{N} \geq A\right] P_{A}+\mathbb{E}\left[e^{\theta S_{N}} \mid S_{N} \leq-B\right]\left(1-P_{A}\right)
$$

We can obtain an approximation for P_{A} by neglecting the overshoots past A or $-B$. Thus we get

$$
\mathbb{E}\left[e^{\theta S_{N}} \mid S_{N} \geq A\right] \approx e^{\theta A}, \quad E\left[e^{\theta S_{N}} \mid S_{N} \leq-B\right] \approx e^{-\theta B}
$$

The result follows.

