
Lecture-20 : Martingales

1 Martingales
A filtration is an increasing sequence of σ -fields, with nth σ -field denoted by Fn. A sequence X = (Xn : n ∈ N)
of random variables is said to be adapted to the filtration (Fn : n ∈ N) if Xn ∈ Fn. A discrete stochastic process
(Xn, n ∈ N) is said to be a martingale with respect to (Fn : n ∈ N) if

i E[|Xn|]< ∞,

ii Xn is adapted to Fn,

iii E[Xn+1|Fn] = Xn, for each n ∈ N.

If the equality in third condition is replaced by≤ or≥, then the process is called supermartingale or submartin-
gale, respectively. For a discrete stochastic process X = (Xn : n ∈ N), its natural filtration is defined as

Fn , σ(X1, . . . ,Xn).

Corollary 1.1. For a martingale X adapted to a filtration F, for each n ∈ N

EXn = EX1.

Example 1.2 (Simple random walk). Let (ξi : i ∈ N) be a sequence of independent random variables with
mean Eξi = 0 and E|ξi| < ∞ for each i ∈ N. Let Xn = ∑

n
i=1 ξi and Fn = σ(ξ1, . . . ,ξn) for each n ∈ N. Then,

(Xn : n ∈ N) is a martingale with respect to the natural filtration of sequence ξ . This follows, since EXn = 0
and

E[Xn+1|Fn] = E[Xn +ξn+1|Fn] = Xn.

Example 1.3 (Product martingale). Let (ξi : i ∈ N) be a sequence of independent random variables with
mean Eξi = 1 and E|ξi|< ∞ for each i ∈ N. Let Xn = Πn

i=1ξi and Fn = σ(ξ1, . . . ,ξn). Then, (Xn : n ∈ N) is a
martingale with respect to the natural filtration of ξ . This follows, since EXn = 1 and

E[Xn+1|Fn] = E[Xnξn+1|Fn] = Xn.

Example 1.4 (Branching process). Consider a population where each individual i can produce an indepen-
dent random number of offsprings Zi in its lifetime, given by a common distribution P = (Pj : j ∈ N0) and
mean µ = ∑ j∈N jPj. Let Xn denote the size of the nth generation, which is same as number of offsprings
generated by (n− 1)th generation. The discrete stochastic process (Xn ∈ N0 : n ∈ N) is called a branching
process. Let X0 = 1 and Fn = σ(X1, . . . ,Xn), then,

Xn =
Xn−1

∑
i=1

Zi.

Conditioning on Xn−1 yields, E[Xn] = µn where µ is the mean number of offspring per individual. Then
(Yn = Xn/µn : n ∈ N) is a martingale because E[Yn] = 1 and

E[Yn+1|Fn] =
1

µn+1E[
Xn

∑
i=1

Zi|Fn] =
Xn

µn = Yn.
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Example 1.5 (Doob’s Martingale). Let X be an arbitrary random variable such that E[|X |] < ∞, and Y =
(Yn : n ∈ N) be an arbitrary random sequence. Let F be the natural filtration associated with the stochastic
process Y , then (Xn , E[X |Fn] : n ∈ N) is a martingale. The integrability condition can be directly verified,
and

E[Xn+1|Fn] = E[E[X |Fn+1]|Fn] = E[X |Fn] = Xn.

Example 1.6 (Centralized Doob sequence). For any sequence of random variables X = (Xn : n ∈ N) and
its natural filtration F, the random variable Xi −E[Xi|Fi−1] is zero mean for each i ∈ N. Hence, (Zn ,
∑

n
i=1(Xi−E[Xi|Fi−1]) : n ∈ N) is a martingale with respect to F, provided E|Zn|< ∞. To verify the same,

E[Zn+1|Fn] = E[Zn +Xn−E[Xn|Fn−1]|Fn] = Zn +E[Xn−E[Xn|Fn−1]] = Zn.

Lemma 1.7. If X = (Xn : n∈N) is a martingale with respect to a filtration (Fn : n∈N) and f is a convex function,
then ( f (Xn) : n ∈ N) is a sub martigale with respect to the same filtration.

Proof. The result is a direct consequence of Jensen’s inequality.

E[ f (Xn+1)|Fn]> f (E[Xn+1|Fn]) = f (Xn).

Corollary 1.8. Let a ∈ R be a constant.

i If (Xn : n ∈ N) is a submartingale, then so is ((Xn−a)+ : n ∈ N).

ii If (Xn : n ∈ N) is a supermartingale, then so is (Xn∧a : n ∈ N).

1.1 Stopping Times
Consider a discrete filtration F = (Fn : n ∈ N0). A positive integer valued, possibly infinite, random variable
N is said to be a random time with respect to the filtration F, if the event (N = n) ∈ Fn for each n ∈ N. If
P{N < ∞} = 1, then the random time N is said to be a stopping time. A sequence (Hn : n ∈ N) is predictable
with respect to the the filtration F, if Hn ∈ Fn−1 for each n ∈ N. Further, we define

(H ·X)n ,
n

∑
m=1

Hm(Xm−Xm−1).

Theorem 1.9. Let (Xn : n ∈N0) be a super martingale w.r.t. a filtration F. If H = (Hn : n ∈N) is predictable with
respect to F and each Hn is non-negative and bounded, then (H ·X)n is a super martingale w.r.t. F.

Proof. It follows from the definition,

E[(H ·X)n+1|Fn] = E[Hn+1(Xn+1−Xn)+(H ·X)n|Fn] = Hn+1(E[Xn+1|Fn]−Xn)+(H ·X)n 6 (H ·X)n.

1.2 Stopped process
Consider a discrete stochastic process X = (Xn : n ∈ N) adapted to a discrete filtration F. Let T be a random time
for the filtration F, then the stopped process (XT∧n : n ∈ N) is defined as

XT∧n = Xn1{n6T}+XT 1{n>T}.

Proposition 1.10. Let (Xn : n ∈N) be a martingale with a discrete filtration F. If T is an integer random time for
the filtration F, then the stopped process (XT∧n : n ∈ N) is a martingale.
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Proof. We observe that H = (1{n6T} : n ∈ N) is a non-negative, predictable, and bounded sequence, since

{n 6 T}= {T > n−1}= {T 6 n−1}c = (∪n−1
i=0 {T = i})c = ∩n−1

i=0 {T 6= i} ∈ Fn−1.

In terms of the predictable and bounded sequence H, we can write the stopped process as

XT∧n = X0 +
T∧n

∑
m=1

(Xm−Xm−1) = X0 +
n

∑
m=1

1{m≤T}(Xm−Xm−1) = X0 +(H ·X)n.

Therefore from the previous theorem we have EXT∧n = EXT∧1 = EX1.

Remark 1. For any martingale (Xn : n ∈ N) w.r.t. F, we have EXT∧n = EX1, for all n. Now assume that T is a
stopping time w.r.t. F. It is immediate that stopped process converges almost surely to XT , i.e.

Pr
(

lim
n∈N

XT∧n = XT

)
= 1.

We are interested in knowing under what conditions will we have convergence in mean.

Theorem 1.11 (Martingale stopping theorem). Let X be a martingale and T be a stopping time adapted to a
discrete filtration F. Then, the random variable XT is integrable and the stopped process XT∧n converges in mean
to XT , i.e.

lim
n∈N

EXT∧n = EXT = EX1,

if either of the following conditions holds true.

(i) T is bounded,

(ii) XT∧n is uniformly bounded,

(iii) ET < ∞, and for some real positive K, we have supn∈NE[|Xn+1−Xn||Fn]< K.

Proof. We show this is true for all three cases.

(i) Let K be the bound on T then for all n≥ K, we have XT∧n = XT , and hence it follows that

EX1 = EXT∧n = EXT , ∀n≥ K.

(ii) Dominated convergence theorem implies the result.

(iii) Since T is integrable and XT∧n 6 |X1|+KT , we observe that XT∧n is bounded by an integrable random
variable. The result follows from dominated convergence theorem.

Corollary 1.12 (Wald’s Equation). If T is a stopping time for (Xi : i ∈ N) iid with E|X |< ∞ and ET < ∞, then

E
T

∑
i=1

Xi = ETEX .

Proof. Let µ = EX . Then (Zn = ∑
n
i=1(Xi− µ) : n ∈ N) is a martingale adapted to natural filtration for X , and

hence from the Martingale stopping theorem, we have EZT = EZ1 = 0. But

E[ZT ] = E
T

∑
i=1

Xi−µET.

Observe that condition (iii) for Martingale stopping theorem to hold can be directly verified. Hence the result
follows.
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