Lecture-20: Martingales

1 Martingales

A **filtration** is an increasing sequence of σ -fields, with nth σ -field denoted by \mathcal{F}_n . A sequence $X = (X_n : n \in \mathbb{N})$ of random variables is said to be **adapted** to the filtration $(\mathcal{F}_n : n \in \mathbb{N})$ if $X_n \in \mathcal{F}_n$. A discrete stochastic process $(X_n, n \in \mathbb{N})$ is said to be a **martingale** with respect to $(\mathcal{F}_n : n \in \mathbb{N})$ if

- $i_{-} \mathbb{E}[|X_n|] < \infty,$
- ii_ X_n is adapted to \mathcal{F}_n ,
- iii_ $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$, for each $n \in \mathbb{N}$.

If the equality in third condition is replaced by \leq or \geq , then the process is called **supermartingale** or **submartingale**, respectively. For a discrete stochastic process $X = (X_n : n \in \mathbb{N})$, its **natural filtration** is defined as

$$\mathcal{F}_n \triangleq \sigma(X_1,\ldots,X_n).$$

Corollary 1.1. *For a martingale X adapted to a filtration* \mathfrak{F} , *for each* $n \in \mathbb{N}$

$$\mathbb{E}X_n = \mathbb{E}X_1$$
.

Example 1.2 (Simple random walk). Let $(\xi_i : i \in \mathbb{N})$ be a sequence of independent random variables with mean $\mathbb{E}\xi_i = 0$ and $\mathbb{E}|\xi_i| < \infty$ for each $i \in \mathbb{N}$. Let $X_n = \sum_{i=1}^n \xi_i$ and $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ for each $n \in \mathbb{N}$. Then, $(X_n : n \in \mathbb{N})$ is a martingale with respect to the natural filtration of sequence ξ . This follows, since $\mathbb{E}X_n = 0$ and

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n + \xi_{n+1}|\mathcal{F}_n] = X_n.$$

Example 1.3 (Product martingale). Let $(\xi_i : i \in \mathbb{N})$ be a sequence of independent random variables with mean $\mathbb{E}\xi_i = 1$ and $\mathbb{E}|\xi_i| < \infty$ for each $i \in \mathbb{N}$. Let $X_n = \prod_{i=1}^n \xi_i$ and $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$. Then, $(X_n : n \in \mathbb{N})$ is a martingale with respect to the natural filtration of ξ . This follows, since $\mathbb{E}X_n = 1$ and

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n\xi_{n+1}|\mathcal{F}_n] = X_n.$$

Example 1.4 (Branching process). Consider a population where each individual i can produce an independent random number of offsprings Z_i in its lifetime, given by a common distribution $P=(P_j: j\in \mathbb{N}_0)$ and mean $\mu=\sum_{j\in\mathbb{N}}jP_j$. Let X_n denote the size of the nth generation, which is same as number of offsprings generated by (n-1)th generation. The discrete stochastic process $(X_n\in\mathbb{N}_0:n\in\mathbb{N})$ is called a branching process. Let $X_0=1$ and $\mathcal{F}_n=\sigma(X_1,\ldots,X_n)$, then,

$$X_n = \sum_{i=1}^{X_{n-1}} Z_i.$$

Conditioning on X_{n-1} yields, $\mathbb{E}[X_n] = \mu^n$ where μ is the mean number of offspring per individual. Then $(Y_n = X_n/\mu^n : n \in \mathbb{N})$ is a martingale because $\mathbb{E}[Y_n] = 1$ and

$$\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = \frac{1}{\mu^{n+1}} \mathbb{E}[\sum_{i=1}^{X_n} Z_i | \mathcal{F}_n] = \frac{X_n}{\mu^n} = Y_n.$$

1

Example 1.5 (Doob's Martingale). Let X be an arbitrary random variable such that $\mathbb{E}[|X|] < \infty$, and $Y = (Y_n : n \in \mathbb{N})$ be an arbitrary random sequence. Let \mathcal{F} be the natural filtration associated with the stochastic process Y, then $(X_n \triangleq \mathbb{E}[X|\mathcal{F}_n] : n \in \mathbb{N})$ is a martingale. The integrability condition can be directly verified, and

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}_{n+1}]|\mathcal{F}_n] = \mathbb{E}[X|\mathcal{F}_n] = X_n.$$

Example 1.6 (Centralized Doob sequence). For any sequence of random variables $X = (X_n : n \in \mathbb{N})$ and its natural filtration \mathcal{F} , the random variable $X_i - \mathbb{E}[X_i|\mathcal{F}_{i-1}]$ is zero mean for each $i \in \mathbb{N}$. Hence, $(Z_n \triangleq \sum_{i=1}^n (X_i - \mathbb{E}[X_i|\mathcal{F}_{i-1}]) : n \in \mathbb{N})$ is a martingale with respect to \mathcal{F} , provided $\mathbb{E}[Z_n] < \infty$. To verify the same,

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = \mathbb{E}[Z_n + X_n - \mathbb{E}[X_n|\mathcal{F}_{n-1}]|\mathcal{F}_n] = Z_n + \mathbb{E}[X_n - \mathbb{E}[X_n|\mathcal{F}_{n-1}]] = Z_n.$$

Lemma 1.7. *If* $X = (X_n : n \in \mathbb{N})$ *is a martingale with respect to a filtration* $(\mathfrak{F}_n : n \in \mathbb{N})$ *and* f *is a convex function, then* $(f(X_n) : n \in \mathbb{N})$ *is a sub martigale with respect to the same filtration.*

Proof. The result is a direct consequence of Jensen's inequality.

$$\mathbb{E}[f(X_{n+1})|\mathcal{F}_n] \geqslant f(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) = f(X_n).$$

Corollary 1.8. *Let* $a \in \mathbb{R}$ *be a constant.*

 i_{-} If $(X_n : n \in \mathbb{N})$ is a submartingale, then so is $((X_n - a)_+ : n \in \mathbb{N})$.

 ii_{-} If $(X_n : n \in \mathbb{N})$ is a supermartingale, then so is $(X_n \wedge a : n \in \mathbb{N})$.

1.1 Stopping Times

Consider a discrete filtration $\mathcal{F}=(\mathcal{F}_n:n\in\mathbb{N}_0)$. A positive integer valued, possibly infinite, random variable N is said to be a **random time** with respect to the filtration \mathcal{F} , if the event $(N=n)\in\mathcal{F}_n$ for each $n\in\mathbb{N}$. If $P\{N<\infty\}=1$, then the random time N is said to be a **stopping time**. A sequence $(H_n:n\in\mathbb{N})$ is **predictable** with respect to the the filtration \mathcal{F} , if $H_n\in\mathcal{F}_{n-1}$ for each $n\in\mathbb{N}$. Further, we define

$$(H\cdot X)_n \triangleq \sum_{m=1}^n H_m(X_m-X_{m-1}).$$

Theorem 1.9. Let $(X_n : n \in \mathbb{N}_0)$ be a super martingale w.r.t. a filtration \mathfrak{F} . If $H = (H_n : n \in \mathbb{N})$ is predictable with respect to \mathfrak{F} and each H_n is non-negative and bounded, then $(H \cdot X)_n$ is a super martingale w.r.t. \mathfrak{F} .

Proof. It follows from the definition,

$$\mathbb{E}[(H \cdot X)_{n+1} | \mathcal{F}_n] = \mathbb{E}[H_{n+1}(X_{n+1} - X_n) + (H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \leqslant (H \cdot X)_n.$$

1.2 Stopped process

Consider a discrete stochastic process $X = (X_n : n \in \mathbb{N})$ adapted to a discrete filtration \mathcal{F} . Let T be a random time for the filtration \mathcal{F} , then the **stopped process** $(X_{T \wedge n} : n \in \mathbb{N})$ is defined as

$$X_{T \wedge n} = X_n 1_{\{n \leq T\}} + X_T 1_{\{n > T\}}.$$

Proposition 1.10. *Let* $(X_n : n \in \mathbb{N})$ *be a martingale with a discrete filtration* \mathfrak{F} . *If* T *is an integer random time for the filtration* \mathfrak{F} , *then the stopped process* $(X_{T \wedge n} : n \in \mathbb{N})$ *is a martingale.*

Proof. We observe that $H = (1_{\{n \le T\}} : n \in \mathbb{N})$ is a non-negative, predictable, and bounded sequence, since

$$\{n \leqslant T\} = \{T > n-1\} = \{T \leqslant n-1\}^c = (\bigcup_{i=0}^{n-1} \{T = i\})^c = \bigcap_{i=0}^{n-1} \{T \neq i\} \in \mathcal{F}_{n-1}.$$

In terms of the predictable and bounded sequence H, we can write the stopped process as

$$X_{T \wedge n} = X_0 + \sum_{m=1}^{T \wedge n} (X_m - X_{m-1}) = X_0 + \sum_{m=1}^{n} 1_{\{m \le T\}} (X_m - X_{m-1}) = X_0 + (H \cdot X)_n.$$

Therefore from the previous theorem we have $\mathbb{E}X_{T \wedge n} = \mathbb{E}X_{T \wedge 1} = \mathbb{E}X_1$.

Remark 1. For any martingale $(X_n : n \in \mathbb{N})$ w.r.t. \mathcal{F} , we have $\mathbb{E}X_{T \wedge n} = \mathbb{E}X_1$, for all n. Now assume that T is a stopping time w.r.t. \mathcal{F} . It is immediate that stopped process converges almost surely to X_T , i.e.

$$\Pr\left(\lim_{n\in\mathbb{N}}X_{T\wedge n}=X_T\right)=1.$$

We are interested in knowing under what conditions will we have convergence in mean.

Theorem 1.11 (Martingale stopping theorem). Let X be a martingale and T be a stopping time adapted to a discrete filtration \mathfrak{F} . Then, the random variable X_T is integrable and the stopped process $X_{T \wedge n}$ converges in mean to X_T , i.e.

$$\lim_{n\in\mathbb{N}}\mathbb{E}X_{T\wedge n}=\mathbb{E}X_T=\mathbb{E}X_1,$$

if either of the following conditions holds true.

- (i) T is bounded,
- (ii) $X_{T \wedge n}$ is uniformly bounded,
- (iii) $\mathbb{E}T < \infty$, and for some real positive K, we have $\sup_{n \in \mathbb{N}} \mathbb{E}[|X_{n+1} X_n||\mathcal{F}_n] < K$.

Proof. We show this is true for all three cases.

(i) Let *K* be the bound on *T* then for all $n \ge K$, we have $X_{T \land n} = X_T$, and hence it follows that

$$\mathbb{E}X_1 = \mathbb{E}X_{T \wedge n} = \mathbb{E}X_T, \ \forall n > K.$$

- (ii) Dominated convergence theorem implies the result.
- (iii) Since T is integrable and $X_{T \wedge n} \leq |X_1| + KT$, we observe that $X_{T \wedge n}$ is bounded by an integrable random variable. The result follows from dominated convergence theorem.

Corollary 1.12 (Wald's Equation). *If* T *is a stopping time for* $(X_i : i \in \mathbb{N})$ *iid with* $\mathbb{E}|X| < \infty$ *and* $\mathbb{E}T < \infty$ *, then*

$$\mathbb{E}\sum_{i=1}^T X_i = \mathbb{E}T\mathbb{E}X.$$

Proof. Let $\mu = \mathbb{E}X$. Then $(Z_n = \sum_{i=1}^n (X_i - \mu) : n \in \mathbb{N})$ is a martingale adapted to natural filtration for X, and hence from the Martingale stopping theorem, we have $\mathbb{E}Z_T = \mathbb{E}Z_1 = 0$. But

$$\mathbb{E}[Z_T] = \mathbb{E}\sum_{i=1}^T X_i - \mu \mathbb{E}T.$$

Observe that condition (iii) for Martingale stopping theorem to hold can be directly verified. Hence the result follows.