
Lecture-02: Binary Classification

1 Definitions
Definition 1.1 (Input space). The set if all possible examples or instances is called the input space and denoted
by X⊆ RN with N > 1.

Definition 1.2 (Output space). The set of all possible labels or targets is called the output space and denoted by
Y. For binary classification, Y= {0,1} or {−1,1}.

Definition 1.3 (Concepts). A mapping from input space to output space is called a concept and denoted by
c : X→ Y. When Y = {0,1}, any concept c can be identified by the set Ac = {x ∈ X : c(x) = 1} such that c(x) =
1{x∈Ac} = 1{Ac}(x).

The set of all true concepts is called the concept class and denoted by C.

Example 1.4. The set of all triangles, rectangles, circles, lines in the plane are all examples of concept classes.

Definition 1.5 (Hypothesis). The set of all possible candidate concepts is called the hypothesis class and denoted
by H ⊆ (Y′)X. A consistent hypothesis set contains the concept to learn, and an inconsistent hypothesis set doesn’t
contain it.

Assumptions 1.6. All examples in X are identically and independently distributed (iid) with a fixed but unknown
underlying distribution D.

Definition 1.7 (Sample). We have a sample S = (xi ∈ X : i ∈ [m]) of size m generated iid according to the
distribution D. For a concept c : X→ Y′, we have a labeled sample T = ((xi,yi) ∈ X×Y′ : i ∈ [m]) such that
yi = c(xi).

Definition 1.8 (Generalization error). Given a hypothesis h∈H, target concept c, and an underlying distribution
D from which an example X is generated iid, the generalization error or risk of hypothesis h is defined as

R(h), P [h(X) 6= c(X)] = E1{h(X)6=c(X)}.

Definition 1.9 (Supervised learning). The supervised learning is selection of a hypothesis hT ∈ H to minimize
the generalization error with respect to c. That is,

hT = argmin
h∈H

R(h).

Remark 1. The generalization error of a hypothesis is not directly accessible to the learner since both the distribu-
tion D and concept c are unknown. However, one can measure the empirical error of a hypothesis on the labeled
sample T .

Definition 1.10 (Empirical error). For a hypothesis h ∈H, a target concept c ∈C, and a sample S = (xi ∈X : i ∈
[m]) The empirical error is defined as

R̂(h) =
1
m

m

∑
i=1

1{h(xi)6=c(xi)}.

Remark 2. The empirical error of a hypothesis is the average error over the sample S, while the generalization
error is the expected error based on the distribution D. We see that ER̂(h) = R(h) by the linearity of expectations.
We will see later that R̂(h)≈ R(h) with high probability.

2 Support Vector Machines
Support vector machines are one of the most theoretically well motivated and practically most effective classi-
fication algorithms. We first introduce this algorithm for separable datasets, then present its general version for
non-separable datasets.
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2.1 Linear Classification
Let the input space be X= RN for the number of dimensions N > 1, the output space Y= {−1,1}, and the target
function be some mapping c : X→ Y.

Assumptions 2.1. We define the hypothesis set as a collection of separating hyperplanes

H ,
{

x 7→ sign(〈w,x〉+b) : w ∈ RN ,b ∈ R
}
.

The labeled training sample of size m denoted by T = ((xi,yi) ∈ X×Y : i ∈ [m]) where yi = c(xi) for each i ∈ [m],
and each example of the sample is generated iid by the distribution D.

The objective is to select an h ∈ H such that the generalization error RD(h) is minimized, where

RD(h) = P [h(x) 6= c(x)] .

Remark 3. Any hypothesis h ∈ H is of the form x 7→ sign(〈w,x〉+ b) and labels positively all points falling on
one side of the hyperplane 〈w,x〉+ b = 0 and labels negatively all others. This problem is referred to as linear
classification problem.

3 SVMs — separable case
Assumptions 3.1. The training sample T can be separated into two non-empty sets by a hyperplane. In other
words, there exists a hyperplane 〈w,x〉+b = 0 such that T = T1∪T2 and T1∩T2 = /0 where

T1 = {(x,y) ∈ T : 〈w,x〉+b > 0} , T2 = {(x,y) ∈ T : 〈w,x〉+b < 0} .

Let 〈w,x〉+ b = 0 be one of infinitely such planes. Which hyperplane should a learning algorithm select?
The solution returned by the SVM algorithm is the hyperplane with the maximum margin, or the distance to the
closest points, and is thus known as the maximum-margin hyperplane.

3.1 Primal optimization problem
The assumption above confirms the existence of at least one pair (w,b) such that 〈w,x〉+b 6= 0. We can normalize
the pair (w,b) by the scalar min(x,y)∈T |〈w,x〉+b|, such that if the closest point is x0 ∈ S, then

|〈w,x0〉+b|= 1.

We define this representation of the hyperplane 〈w,x〉+b = 0 as the canonical hyperplane. The distance of any
point x0 ∈ RN to a hyperplane is given by

d(x0,〈w,x〉+b = 0) =
|〈w,x〉+b|
‖w‖

.

This is due to the fact that w/‖w‖ is the unit vector normal to the hyperplane, and the distance of the hyperplane
from the origin is −b/‖w‖. Hence, the distance of any point x0 ∈ RN from the hyperplane 〈w,x〉+b = 0 is given
by the distance between it’s projection to the unit vector w/‖w‖ and −b/‖w‖ which equals∣∣∣∣〈 w

‖w‖
,x0

〉
+

b
‖w‖

∣∣∣∣= |〈w,x0〉+b|
‖w‖

.

Let ρ be the minimum distance of any point to the plane, i.e

ρ , min
(x,y)∈T

|〈w,x〉+b|
‖w‖

=
1
‖w‖

.

The maximizing the margin is equivalent to minimizing the norm ‖w‖ or 1
2 ‖w‖

2.
We can show in a figure the margin for a maximum-margin hyperplane with a canonical representation (w,b).

We also see the marginal hyperplanes, parallel to the separating hyperplane and passing through the closest
points on the negative or positive sides. Since they are parallel to the separating hyperplane, they admit the
same normal vector w. By the definition of a canonical representation, for a point x on a marginal hyperplane,
|〈w,x〉+b| = 1, and thus the marginal hyperplanes are 〈w,x〉+ b = ±1. Correct classification is achieved for a
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labeled point (x,y) ∈ T when y = sign(〈w,x〉+ b). Since |〈w,x〉+b| > 1 for all labeled points (x,y) ∈ T by the
definition of canonical hyperplanes, a correct classification is achieved when

y(〈w,x〉+b)> 1 for all (x,y) ∈ T.

Hence our original problem statement translates to finding (w,b) so as to maximize the margin ρ such that all
points are correctly separated is equivalent to

min
w,b

1
2
‖w‖2 (1)

subject to: y(〈w,x〉+b)> 1 for all (x,y) ∈ T.

The objective function F : w 7→ 1
2 ‖w‖

2 is infinitely differentiable, its gradient is ∇w(F) = w and its Hessian is the
identity matrix ∇2F(w) = I with strictly positive eigenvalues. Therefore, ∇2F(w) � 0 and F is strictly convex.
The constraints are all defined by the affine functions gi : (w,b) 7→ 1− y(〈w,x〉+ b) and are thus qualified. Thus
the optimization problem in (1) has a unique solution, and can be solved by a quadratic program.

3.2 Support vectors
Consider the Lagrange variables αi > 0 for all i∈ [m] associated to the m affine constraints and let α , (αi : i∈ [m]).
Then, we can define the Lagrangian for all canonical pairs (w,b) ∈ RN+1 and Lagrange variables α ∈ Rm

+ as

L(w,b,α),
1
2
‖w‖2−

m

∑
i=1

αi[yi(〈w,x〉+b)−1].

The KKT conditions are obtained by setting the gradient of the Lagrangian with respect to the primal variables w
and b to zero, and by writing the complementary conditions:

∇wL|w=w∗ = w∗−
m

∑
i=1

αiyixi = 0, ∇bL|b=b∗ =−
m

∑
i=1

αiyi = 0, αi[yi(〈w∗,xi〉+b∗)−1] = 0.

This implies the SVM solution (w∗,b∗), the weight vector w∗ = ∑
m
i=1 αiyixi is a linear combination of the training

examples (x1, . . . ,xm), with that vector appearing in the summation if αi 6= 0.

Definition 3.2 (Support vectors). We can define the support vectors as the examples or feature vectors for which
the corresponding Lagrange variable αi 6= 0, i.e.

V (S) = {xi ∈ S : αi 6= 0} ⊆ {xi ∈ S : 〈w,xi〉+b = 1} .

By the complementarity condition, if xi ∈V , then yi(〈w,xi〉+b) = 1, and hence the support vectors lie on the
marginal hyperplanes 〈w,xi〉+b =±1. That is,

w∗ = ∑
xi∈V

αiyixi. (2)

Remark 4. Support vectors completely determine the maximum-margin hyperplane solution. Vectors not lying on
the marginal hyperplane or V (S) do not affect the definition of these hyperplanes.

Remark 5. The slope of the hyperplane w∗ is unique but the support vectors are not unique. A hyperplane is
sufficiently determined by N + 1 points in N dimensions. Thus, when more than N + 1 points lie on a marginal
hyperplane, different choices are possible for the N +1 support vectors.

3.3 Dual optimization problem
To derive the dual form of the constrained primal optimization problem (1), we substitute the definition of opti-
mal vector w∗ in terms of the dual variables as expressed in (2) and apply the constraint ∑

m
i=1 αiyi = 0 into the

Lagrangian, to get

L=
1
2

∥∥∥∥∥ m

∑
i=1

αiyixi

∥∥∥∥∥
2

−
m

∑
i=1

m

∑
j=1

αiα jyiy j
〈
xi,x j

〉
+

m

∑
i=1

αi =
m

∑
i=1

αi−
1
2

m

∑
i=1

m

∑
j=1

αiAT (i j)α j,
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where the matrix AT = (yi
〈
xi,x j

〉
y j : i, j ∈ [m]) is the Gram matrix associated with vectors (y1x1, . . . ,ymxm) and

hence is positive semidefinite. We can write the dual SVM optimization problem as

max
α

m

∑
i=1

αi−
1
2

m

∑
i=1

m

∑
j=1

αiAT (i, j)α j (3)

subject to: αi > 0, for all i ∈ [m], and
m

∑
i=1

αiyi = 0.

The objective function G : α 7→ ∑
m
i=1 αi− 1

2 ∑
m
i=1 ∑

m
j=1 αiAT (i, j)α j is infinitely differentiable, and its Hessian is

given by ∇2G = −AT � 0, and hence G is a concave function. Since the constraints are affine and convex, the
dual maximization problem (3) is equivalent to a convex optimization problem. Since G is a quadratic function
of Lagrange variables α , this dual optimization problem is also a quadratic program, as in the case of the primal
optimization. Since the constraints are affine, they are qualified and strong duality holds. Thus, the primal and
dual problems are equivalent, i.e., the solution α of the dual problem (3) can be used directly to determine the
hypothesis returned by SVMs, using the equation (2) for the normal to the supporting hyperplane

h(x) = sign(〈w,x〉+b) = sign

(〈
m

∑
i=1

αiyi 〈xi,x〉
〉
+b

)
.

For any xi ∈V (S), we have yi = 〈w,xi〉+b, and hence we can write

b = yi−
m

∑
j=1

α jy j
〈
x j,xi

〉
. (4)

Remark 6. The hypothesis solution depends only on inner products between vectors and not directly on the vectors
themselves.

Since the equation (4) holds for all xi ∈V (S), that is for all i such that αi 6= 0, we can write

0 =
m

∑
i=1

αiyib =
m

∑
i=1

αiy2
i −

m

∑
i, j=1

αiAT (i, j)α j =
m

∑
i=1

αi−‖w‖2 .

That is, we can write the margin ρ as

ρ
2 =

1

‖w‖2
2

=
1
‖α‖1

.

3.4 Leave-one-out analysis
Now we will look at some results that show us why SVMs work well in practice.

Definition 3.3 (Leave-one-out error). Given a sample S of size m and a hypothesis hS the leave-one-out error
is defined as

R̂LOO(hS) =
1
m

m

∑
i=1

1{
hS\{xi}(xi)6=yi

}.
Lemma 3.4. The average leave-one-out error for samples of size m is an unbiased estimate of the average gener-
alization error for samples of size m−1. That is,

ES∼Dm [R̂LOO(hS)] = ES′∼Dm−1R(hS′).

Proof. Using the linearity of expectation,

ER̂LOO(hS)=
1
m

m

∑
i=1

E1{hS\{xi}(xi)6=yi}=ES∼Dm1{hS\{x1}(x1)6=y1}=ES′∼Dm−1Ex1∼Dm1{hS\{x1}(x1)6=y1}=ES′∼Dm−1R(hS′).

Theorem 3.5. Let S be a linearly separable sample of size m+ 1 and NV (S) = |V (S)| be the number of support
vectors that define the hypothesis hS returned by the SVM. Then

ES′∼DmR(hS′) = ES∼Dm+1
|V (S)|
m+1

Proof. We will first show that R̂LOO(hS) 6
|V (S)|
m+1 . Let x ∈ V (S), then hS\{x} = hS and it correctly classifies x.

Contrapositively, if hS\{x} misclassifies x, then x must be a support vector. Hence,

m+1

∑
i=1

1{hS\{xi}(xi)6=yi} 6 |V (S)| .

Then by taking expectation on both sides and applying the previous lemma, we get the desired result.
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A Convex optimization
Definition A.1 (Gradient). Let f : X ⊂ RN → R, then

∇ f (x) =


∂ f
∂x1

(x)
...

∂ f
∂xN

(x)


Definition A.2 (Hessian). Let f : X ⊂ RN → R, then

∇
2 f (x) =

[
∂ 2 f

∂xi∂x j

]
16i, j6N

Definition A.3 (Stationary Point). If f attains a local extremum at x′ = x then ∇ f (x′) = 0. x′ is called a stationary
point.

Definition A.4 (Convex Set). A set X is called convex if ∀x,y ∈ X and α ∈ [0,1],

αx+(1−α)y ∈ X

Definition A.5 (Convex Hull). A convex hull of a set A is the smallest convex set including A.

conv(A) =

{
∑

xi∈A
αixi : 0 6 αi 6 1,∑αi = 1

}

Definition A.6 (Convex Function). Let X⊂ RN be a convex set. Then f : X→ R is a convex function if

f (αx+(1−α)y)6 α f (x)+(1−α) f (y)

If f is differentiable then it is convex if

f (y)− f (x)> 〈∇ f (x),y− x〉

If f is twice differentiable then it is convex if

∇
2 f > 0

Or in other words, if ∇2 f is a positive semi-definite matrix.
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