
Lecture-03: SVMs — non-separable case

1 SVMs — non-separable case
In most practical settings, the given sample is not linearly separable. That is, it would not be possible to draw
a hyperplane in RN that perfectly separates the two sets of points. More precisely, for any canonical hyperplane
〈w,x〉+b = 0, there exists xi ∈ S such that

yi(〈w,xi〉+b)6 1

To minimize the number of such points we can try to find a hyperplane that minimizes the empirical error,

minw,b

m

∑
i=1

1{yi(〈w,xi〉+b)61}.

But this optimization problem is NP-hard in the dimension of the space and cannot be solved efficiently. Moreover
we would like to work with a smooth function to optimize. The constraints imposed in the linearly separable case
discussed in the linearly spearable case cannot all hold simultaneously. However, a relaxed version of these
constraints can indeed hold, that is, for each example i ∈ [m], t here exist slack variables ξi > 0 such that

yi(〈w,xi〉+b)> 1−ξi.

A slack variable ξi measures the distance by which feature vector xi violates the desired inequality, yi(〈w,xi〉+b)>
1.

Definition 1.1 (Outliers). For a hyperplane 〈w,x〉+ b = 0, a feature vector xi with slack variable ξi > 0 is an
outlier. The set of outliers O is defined as

O , {xi ∈ S : 1−ξi 6 yi(〈w,xi〉+b)6 1}= {xi ∈ S : ξi > 0} ..

Remark 1. Each example xi must be positioned on the correct side of the appropriate marginal hyperplane to not
be considered an outlier. As a consequence, a feature vector xi with 0 < yi(〈w,xi〉+b) < 1 is correctly classified
by the hyperplane 〈w,x〉+b = 0 but is nonetheless considered to be an outlier, that is, ξi > 0.
Remark 2. If we omit the outliers, the training data is correctly separated by 〈w,x〉+b = 0 with a margin ρ = 1

‖w‖
that we refer to as the soft margin, as opposed to the hard margin in the separable case.

How should we select the hyperplane in the non-separable case? One idea consists of selecting the hyperplane
that minimizes the empirical error. We have already rejected that idea due to the complexity considerations. We
have conflicting objectives here. On the one hand, we need to minimize the total slack due to the outliers, measured
by ∑

m
i=1 ξ

p
i , for some p > 1. On the other hand, we wish to maximize the margin for non-outliers. Larger margin

can lead to more outliers and hence larger slack. Hence, these two are conflicting objectives.

1.1 Primal optimization problem
We define a primal problem by deciding on a trade-off between these two objectives for the non-seperable case,
where C > 0 is the trade-off parameter between margin-maximization and the slack penalty. For ξ = (ξ1, . . . ,ξm),
the primal problem is

min
w,b,ξ

1
2
‖w‖2 +C

m

∑
i=1

ξ
p
i (1)

subject to yi(〈w,xi〉+b)> 1−ξi and ξi > 0, for all i ∈ [m].

The parameter C is determined by n-fold cross validation for a given dataset.
As in the separable case, the equation (1) is a convex optimization problem since the constraints are affine and

thus convex and since the objective function is convex for any p > 1. In particular, ξ 7→∑
m
i=1 ξ

p
i = ‖ξ‖p

p is convex
in view of the convexity of the norm ‖·‖p.

There are many possible choices for p leading to more or less aggressive penalizations of the slack terms. The
choices p = 1 and p = 2 lead to the most straightforward solutions and analyses.
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Definition 1.2 (Hinge loss). The loss functions associated with p = 1 and p = 2 are called the hinge loss and the
quadratic hinge loss, respectively.

Both hinge losses are convex upper bounds on the zero-one loss, thus making them well suited for optimization.
In what follows, the analysis is presented in the case of the hinge loss (p = 1), which is the most widely used loss
function for SVMs.

1.2 Support vectors
We denote the Lagrange variables associated with the relaxed separation constraint by α = (α1, . . . ,αm) and the
non-negative constraint of slack variables by β = (β1, . . . ,βm). Then, we can write the Lagrangian as

L(w,b,ξ ,α,β ) =
1
2
‖w‖2

2 +C‖ξ‖1−
m

∑
i=1

αi(yi(〈w,xi〉+b)−1+ξi)−
m

∑
i=1

βiξi. (2)

Similar to the separable case, the constraints are affine and thus qualified. The objective function as well as the
affine constraints are convex and differentiable. Thus, the KKT conditions apply at the optimum. We can write
the first KKT conditions as

w∗ =
m

∑
i=1

αiyixi,
m

∑
i=1

αiyi = 0,

and the next three KKT condition for all i ∈ [m] as

αi +βi =C, αi.(yi(〈w,xi〉+b)−1+ξi) = 0, βiξi = 0.

Definition 1.3 (Support vectors). An example is called a support vector if the corresponding relaxed constraint
Lagrange variable αi 6= 0. We can write the set of support vectors as

V (S), {xi ∈ S : αi 6= 0} ⊆ {xi ∈ S : yi(〈w,xi〉+b) = 1−ξi} .

If for some feature vector xi ∈ V (S), the corresponding slack variable ξi = 0, then yi(〈w,xi〉+b) = 1 and the
example xi lies on a marginal hyperplane, as in the separable case. Otherwise, ξi 6= 0 and xi is an outlier. In this
case, the KKT condition implies βi = 0 and hence αi = C. Thus, support vectors xi are either outliers, in which
case αi =C, or vectors lying on the marginal hyperplanes. That is, we can write the support vector as a union of
disjoint sets

V (S) = {xi ∈V (S) : ξi = 0}∪{xi ∈V (S) : ξi > 0}= {xi ∈ S : yi(〈w,xi〉+b) = 1}∪{xi ∈ S : αi =C} .

Remark 3. As in the separable case, note that while the weight vector w solution is unique, the support vectors are
not.

1.3 Dual optimization problem
Substituting for the w in terms of the support vectors, we get

L= ‖α‖1−
1
2

∥∥∥∥∥ m

∑
i=1

αiyixi

∥∥∥∥∥
2

2

.

The constraints are αi > 0 together with βi > 0 to get αi 6C, and ∑
m
i=1 αiyi = 0. Hence, the dual problem is

min
α
‖α‖1−

1
2

∥∥∥∥∥ m

∑
i=1

αiyixi

∥∥∥∥∥
2

2

(3)

subject to
m

∑
i=1

αiyi = 0, and 0 6 αi 6C, for all i ∈ [m].

The objective function is concave and infinitely differentiable and is equivalent to a convex quadratic. The pro
program. This problem is equivalent to the primal problem. The solution α of the dual problem can be used to
return the SVM hypothesis

h(x) = sign(〈w,x〉+b) = sign

(
m

∑
j=1

α jy j
〈
x j,x

〉
+b

)
.

Recall that for all xi ∈V (S)∩{ξi = 0}, we have 〈w,xi〉+b = 1. Hence, the constant b is given by

b = yi−
m

∑
j=1

α jy j
〈
x j,xi

〉
, for any xi such that 0 < αi <C.
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A Review of Linear Algebra

A.1 Vector Space
A vector space over the field R is a set V equipped with following two operations, each satisfying four axioms.

A.1.1 Vector addition

Vector addition is a mapping + : V×V →V defined by +(v,w) = v+w for any two elements v,w∈V , that satisfies
the following four axioms.

1. Associativity of addition : u+(v+w) = (u+ v)+w; for all u,v,w ∈V

2. Commutativity of addition : u+ v = v+u; for all u,v ∈V

3. Existence of Identity: There exists a zero vector (0 ∈V ) s.t, u+0 = u; for all u ∈V

4. Existence of Inverse: For every u ∈V, there exists an element −u ∈V ; s.t, u+(−u) = 0

A.1.2 Scalar Multiplication

Scalar multiplication is a mapping · : R×V → V defined by ·(α,v) = αv ∈ V , that satisfies the following four
axioms.

1. Compatibility with the field: a(bu) = (ab)u; for all a,b ∈ R and u ∈V

2. Existence of Identity : For multiplicative identity element 1 ∈ R, 1u = u; for all u ∈V

3. Distributivity over vector addition : α(vu) = αu+αv; for all α ∈ R and u,v ∈V

4. Distributivity over field addition : (α +β )u = αu+βu; for all α,β ∈ R and u ∈V

Example A.1 (Vector space). zz Following are some common examples of vector spaces.

1. Space of all real numbers R.

2. Euclidean space of N-dimensions, denoted by RN .

3. Space of continuous functions over a compact subset [a,b] denoted by C([a,b]).

A.2 Inner Product Space
A inner product space is a vector space equipped with an inner product denoted by 〈·, ·〉 : V ×V →R that satisfies
the following axioms.

1. Symmetry: 〈x,y〉= 〈y,x〉

2. Linearity: 〈αx+βy,z〉= α〈x,z〉+β 〈y,z〉

3. Definiteness: 〈x,x〉> 0; 〈x,x〉= 0 iff x = 0

Example A.2 (inner product spaces). Following are some common examples of inner product spaces.

1. For the vector space V = RN , we can define the inner product between two N-dimensional vectors as

〈x,y〉= 〈
[
x1, . . . ,xN

]T
,
[
y1, . . . ,yN

]T 〉.= xT y =
N

∑
i

xiyi.

2. For vector space V =C(RN), we can define the inner product of two continuous functions over RN as

〈 f ,g〉=
∫
RN

( f ,g)(t)dt.

3. For the vector space of random variables, we can define the inner product of two random variables as

〈X ,Y 〉= E(XY ).
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A.3 Norms
Norm is a mapping ‖·‖ : V → R+ that satisfy the following axioms.

1. Definiteness: ‖v‖= 0 iff v = 0

2. Homogeneity: ‖αv‖= |α|‖v‖

3. Triangle inequality: ‖v+w‖6 ‖v‖+‖w‖

Example A.3 (Norms). Following are examples of commonly defined norms on some example vector spaces.

1. V = R;‖X‖= |X |

2. V = RN ;‖X‖p =
(

∑
N
i=1 |Xi|p

) 1
p

3. V = RN ;‖X‖2 =
(

∑
N
i=1 |Xi|2

) 1
2

Proposition A.4 (Holder’s Inequality). Let p,q > 1 be conjugate, i.e. 1
p +

1
q = 1 Then,

|〈x,y〉|6 ‖x‖p ‖y‖p for all x,y ∈ RN .

Proof. For any positive a,b ∈R and conjugate pair p,q > 1 such that 1/p+1/q = 1, we have from the concavity
of log

ln
(

1
p

ap +
1
q

bp
)
>

1
p

lnap +
1
q

lnbp = lnab.

Since ln(·) is an increasing function, the above inequality implies the Young’s inequality 1
p ap + 1

q bp > ab.

The Holder’s inequality is trivially true if x = 0 or y = 0. Hence, we assume that ‖x‖‖y‖> 0, and let a = |xi|
‖x‖p

and b =
|y|i
‖y‖p

. From Young’s inequality, we have

|x|i
p‖x‖p

p
+
|y|i

q‖y‖q
q
>
|x|i |y|i
‖x‖p ‖y‖q

, for all i ∈ [N].

Since |〈x,y〉|6 ∑
N
i=1 |xi| |yi|, we get the result by summing both sides over i ∈ [N] in the above inequality.

B Review of Convex Optimization
Let f : RN → R be a function over N-dimensional reals. Then, we can write its Taylor series expansion around
the neighborhood of x ∈ RN as

f (y) = f (x)+
N

∑
i=1

∂ f
∂xi

(yi− x j)+
1
2

N

∑
i=1

N

∑
j=1

∂ 2 f
∂xi∂x j

(yi− xi)(y j− x j)+o(‖y− x‖2
2).

We can define the gradient vector ∇ f =
[

∂ f
∂x1

. . . , ∂ f
∂xN

]T
, and the Hessian ∇2 f ∈ RN×N such that [∇2 f ]i j =

∂ 2 f
∂xi∂x j

, to observe

f (y) = f (x)+∇ f T (y− x)+(y− x)T
∇

2 f (y− x)+o(‖y− x‖2
2).

B.1 Convex Function
Let X⊆ RN . For a function f : X→ R, we define its epigraph as

E pi( f ), {(x,y) ∈ RN×R : y > f (x)}.

Definition B.1. A function f : RN → R is convex if it’s dom( f ) is convex and E pi( f ) is convex.

Note 1. For a convex function f (·) ; f (αx+ ᾱy)6 α f (x)+ ᾱ f (y) where α + ᾱ = 1.

• If f is differentiable then f is convex iff
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1. dom( f ) is convex

2. f (y)− f (x)> 〈∇ f (x),y− x〉; for all x,y ∈ dom( f )

Proof : f (y)− f (x) = 〈∇ f (x),y− x〉+ 1
2 (y− x)T ∇2 f (x)(y− x)> 〈∇ f (x),y− x〉.

• If f is twice differentiable then f is convex iff dom( f ) is convex and it’s Hessian is positive semi definite :
∇2 f (x)� 0; for all x ∈ dom( f )

Example B.2. Convex Function

1. Linear Function: f (x) = 〈w,x〉; where f : RN → R

2. Quadratic Function: f (x) = xT Ax; where A is positive semi definite

3. Abs Maximum f (x) = max |X |i∈N = ‖X‖
∞

Lemma B.3. Composition of Functions
Let, h(.) : R→ R;g(.) : RN → R and f : RN → R ; for all x ∈ RN where f (x) is defined by f (x) = h(g(x)), then
following inequalities are valid

1. If h is a convex and non decreasing and g is convex,=⇒ f (.) is convex
Proof: As g(.) is convex : g(αx+ ᾱy)6 αg(x)+ ᾱg(y)
Now, h(g(αx+ ᾱy))6 h(αg(x)+ ᾱg(y))6 αh(g(x))+ ᾱh(g(y))(Proved.)

2. If h is a convex and non increasing and g is concave,=⇒ f (.) is convex

3. If h is a concave and non decreasing and g is concave,=⇒ f (.) is concave

4. If h is a concave and non increasing and g is convex,=⇒ f (.) is concave

Theorem B.4. Jensen’s Inequality
Let X ∈C ⊂ RN be a r.v with finite mean and f : C→ R is convex,
Then E[X ] ∈C, E[ f (X)]6 ∞ and f (E[X ])6 E[ f (X)]

Proof: f (
m

∑
i=1

αixi)6
m

∑
i=1

αi f (xi); where αis could be interpreted as probabilities as αi > 0 and
m

∑
i=1

αi = 1

B.2 Constrained Optimization
Let f : RN → R and gi : RN → R, i ∈ [m]
Principle Optimization Problem: min f (x) s.t. gi(x)6 0; for all i ∈ [m]

Note 2. Let p∗ be the optimum value for the above problem.

Definition B.5. Lagrangian
If x ∈ RN and α ∈ RM

+ , then Lagrangian L(x,α) : RN×RM
+ → R associated with the principal problem is defined

as, L(x,α) = f (x)+
m

∑
i=1

αigi(x); The variables α ∈ RM
+ are called Lagrange or Dual Variables.

Definition B.6. Dual Function

Dual function associated with the Principal Optimization Problem is defined as F : RM
+ → R defined as

F(α) = infL(x,α) where x ∈ RN

Remark 4. Important Properties of Dual Function

1. F is concave in α

2. F(α)6 L(x,α)6 f (x)

3. F(α)6 inf
x∈RN

f (x) = p∗

4. F(α)6 p∗ such that gi(x)6 0
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B.2.1 Dual Problem:

Dual Problem associated with Principal Optimization Problem is as follows
Max F(α) ; such that α ∈ RM

+

Note 3. Let d∗ be the optimal value of this dual problem.
Remark 5. Dual Function

1. Dual problem is always convex.

2. d∗ 6 p∗

3. (p∗−d∗) is called duality gap. When d∗ = p∗, it is known as strong duality. It holds for convex optimization
problems where constraints are qualifying.

Definition B.7. Strong Constraint Qualification:
Assume that int(X) 6= φ , then the strong constraint qualification or Slater’s Condition is defined as, there exists
x̄ ∈ int(X), such that g(x̄)< 0

Definition B.8. Weak Constraint Qualification: Assume that int(X) 6= φ , then the strong constraint qualification
or weak Slater’s Condition is defined as there exists x̄ ∈ int(X) : for all i ∈ [1,m],(gi(x̄) < 0)∨ (gi(x̄) = 0∧ gi
affine)

Theorem B.9. Saddle Point: Sufficient Condition
Let P be a constrained optimum problem over X= RN If (x∗,α∗) is a saddle point of the associated Lagrangian,
i.e. for all x ∈ RN , for all α > 0, L(x∗,α))6 L(x∗,α∗)6 L(x,α∗) Then, (x∗,α∗) is a saddle point of P.

Theorem B.10. Saddle point-Necessary Condition

• Assume that f and gi, i ∈ [1,m] are convex functions and Slater’s condition holds, then if x is a solution of
the constrained optimization problem, then there exists α > 0 s.t (x,α) is a saddle point of the Lagrangian.

• Assume that f and gi, i ∈ [1,m] are convex differentiable functions and weak Slater’s condition holds, then
if x is a solution of the constrained optimization problem, then there exists α > 0 s.t (x,α) is a saddle point
of the Lagrangian.

Theorem B.11. Karush-Kuhn-Tucker’s Theorem
Let f ,gi : X→ R, for all i ∈ [1,m] are convex and differentiable function and that the constrains are qualified.
Then x̄ is a solution of the constrained problem iff there exists ᾱ > 0 s.t.

• ∇xL(x̄, ᾱ) = ∇x f (x̄)+ 〈ᾱ,∇xg(x̄)〉= 0

• ∇αL(x̄, ᾱ) = g(x̄)6 0

• 〈ᾱ,g(x̄)〉= 0
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