
Lecture-04: PDS Kernels and RKHS

1 Kernel Methods
Kernel methods are extensions of SVMs to define non-linear decision boundaries, and can also be used for other
algorithms that depend solely on inner products between sample points.

Kernel functions map the data to higher dimensional space. Under symmetry and positive definiteness of these
kernel functions, we can define inner product in this high dimensional space. A linear separation in this high
dimensional space is non-linear separation in the original space.

Example 1.1 (Document classification). Let X be the set of words in a document, which has a typical size of
|X| = 105 words. Classifying the document into different types based on single words (elements from the set X)
will be difficult because many types of documents will share the same words. A better way to classify documents
is to look for patterns in groups of adjacent words. For example, consider X3, which is the set of trigrams (triplets
of words). Classifying documents in the space of trigrams will yield better results despite the increased size of the
space |X3|= 1015.

Remark 1. The complexity of linear separation algorithm like SVM doesn’t depend on the dimension of the space,
rather on the margin ρ . However, the higher dimension inner product may become costly.

Definition 1.2 (Kernels). For the input space X, we let the non-linear map Φ : X→H be a feature mapping that
takes our feature vectors to a higher dimensional space Hilbert H called a feature space. A function K :X×X→R
is called a kernel over X. For this mapping Φ, we define a kernel K by the inner product in the space H, such that

K(x,x′) =
〈
Φ(x),Φ(x′)

〉
H , for all x,x′ ∈ X.

Remark 2. The inner product 〈·, ·〉 is similarity measure between two feature vectors in the feature space H. The
kernel K is a similarity measure between elements of the input space X.

Example 1.3 (Polynomial kernel). For c > 0 and degree d ∈ N, we define a kernel

K(x,x′), (
〈
x,x′
〉
+ c)d , for all x,x′ ∈ X⊆ RN .

For this mapping Φ : X→H, can you find the dimension of H? For N = 2 and d = 2, we see that Φ : X→H given
by Φ(x) =

[
x2

1 x2
2

√
2x1x2

√
2cx1

√
2cx2 c

]
suffices to give us K(x,x′) = 〈Φ(x),Φ(x′)〉H for all x,x′ ∈R2.

Figure 1: Left: Four points from two classes plotted on the x1,x2 axes. These points are not separable by any
hyperplane. Right: The same four points are plotted on the

√
2x1x2 and

√
2cx1 axes. These points are now

separable.

Consider the following classification problem shown in Figure 1, where the red and the blue points must be
separated by a hyperplane. This is not possible in the space R2 since there is no hyperplane that can separate
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the blue and red points. However, when we use the function h(x1,x2) = x1x2 to bring these points to a higher-
dimensional space, we find that these points are indeed separable along the x1x2 dimension.

Remark 3. Why do we work with kernels?

• Efficiency: Inner product in higher dimensional space is equal to the computation of kernel function in the
input space. Computation in the input space X is more efficient than computation in the feature space H
because dim(H)>> dim(X) and 〈x,y〉= O(dim(X)).

• Flexibility: There is no need to explicitly define the map Φ but its existence is guaranteed if K satisfies
Mercer’s condition.

Theorem 1.4 (Mercer’s condition). Let X ⊆ RN be a compact set and let K : X×X→ R be a continuous and
symmetric function. Then, the kernel K admits a uniformly convergent expansion of the form

K(x,x′) =
∞

∑
n=0

anφn(x)φn(x′),

with an > 0 iff for any square integrable function c ∈ L2(x), the following condition holds∫∫
X×X

c(x)c(x′)K(x,x′)dxdx′ > 0.

This is the positive semi-definiteness condition on the kernel K.

This condition is important to guarantee the convexity of the optimization problem for algorithms such as
SVMs and thus convergence guarantees. A condition that is equivalent to Mercer?s condition under the assump-
tions of the theorem is that the kernel K be positive definite symmetric (PDS). This property is in fact more
general since in particular it does not require any assumption about X.

1.1 PDS Kernels
Definition 1.5 (Gram matrix). For a sample S = (x1, . . . ,xm), the kernel matrix or the Gram matrix associated
to the kernel K and the sample S is denoted by K ∈ Rm×m and given byK(x1,x1) . . . K(x1,xm)

...
. . .

...
K(xm,x1) . . . K(xm,xm)

 .
Definition 1.6 (PDS kernels). A kernel K : X×X→R is said to be positive definite symmetric (PDS) if for any
x ∈ Xm, the Gram matrix K = [K(xi,x j)]i j ∈ Rm×m is symmetric positive semi-definite (SPSD).

Remark 4. The matrix K is SPSD if it is

• symmetric, i.e. Ki j = K ji,

• positive semi-definite: for any column vector c ∈ Rm, we have cT Kc > 0.

Example 1.7 (Gaussian kernel). For any σ > 0, a Gaussian kernel is defined as K : X×X→ R such that

K(x,x′), exp
(
−||x− x′||2

2σ2

)
, for all x,x′ ∈ X.

This is a PDS kernel derived by normalization of the following kernel

K′(x,x′) = exp
(
〈x,x′〉

σ2

)
=

∞

∑
n=0

1
n!

(
〈x,x′〉

σ2

)n

, for all x,x′ ∈ X.

Example 1.8 (Sigmoid kernel). For any a,b > 0, a Sigmoid kernel is defined as K : X×X→ R such that

K(x,x′), tanh(a
〈
x,x′
〉
+b).

This kernel is used in sigmoid perceptrons in neural networks due to its similarity to the sign function.
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2 Reproducing Kernel Hilbert Space (RKHS)
Lemma 2.1 (Cauchy-Schwarz inequality for PDS kernel). Let K be a PDS kernel. Then

K2(x,x′)6 K(x,x)K(x′,x′) for all x,x′ ∈ X.

Proof. We can write the following Gram matrix for samples x,x′ and PDS kernel K as

K =

[
K(x,x) K(x,x′)
K(x′,x) K(x′,x′)

]
.

Since K is a PDS Kernel, the Gram matrix K is symmetric and positive semi-definite. In particular, K(x,x′) =
K(x′,x) and the det(K)> 0. Hence, the result follows.

Theorem 2.2 (RKHS). Let K : X×X→R be a PDS kernel. Then, there exists a Hilbert space H and a mapping
Φ : X→H such that for all x,x′ ∈ X,

K(x,x′) =
〈
Φ(x),Φ(x′)

〉
H .

Furthermore, H has the following reproducing property, for all h ∈H and x ∈ X,

h(x) = 〈(h(·),K(x, ·)〉H .

The Hilbert space H is called the RKHS associated with the kernel K.

Remark 5. We make the following observations from the Theorem statement.

1. The Hilbert space H⊆ RX.

2. For any x ∈ X, we have K(x, ·) ∈H.

Proof. For any x∈X, define Φx :X→R such that Φx(x′) =K(x,x′). Let us take H0, the span of kernel evaluations
at finitely many elements of X. That is,

H0 ,

{
∑
i∈I

aiΦxi : I finite ,ai ∈ R,xi ∈ X, for each i ∈ I

}
.

Then, we define a map 〈·, ·〉 : H0×H0→ R such that fo f = ∑i∈I aiΦxi and g = ∑ j∈J b jΦx j , we have

〈 f ,g〉H0
, ∑

i∈I
∑
j∈J

aib jK(xi,x j) = ∑
j∈J

b j f (x j) = ∑
i∈I

aig(xi).

We can verify that the 〈·, ·〉 : H0×H0→ R has the follow properties.

1. Symmetry: By definition, 〈·, ·〉 is symmetric.

2. Bilinearity: 〈·, ·〉 is bilinear. Can you show that 〈α f +βh,g〉= α 〈 f ,g〉+β 〈 f ,g〉?

3. Positive semi-definiteness: For any f ∈ H0, we have f = ∑i∈I aiΦxi and since the Gram matrix K is sym-
metric and positive semidefinite for kernel K and samples S = (xi : i ∈ I), we have

〈 f , f 〉= ∑
i∈I

∑
j∈I

aia jK(xi,x j) = aT Ka > 0.

4. Reproducing property: Let f ∈H0 and f = ∑i∈I aiΦxi . Then,

〈 f ,Φx〉= ∑
i∈I

aiK(xi,x) = ∑
i∈I

aiΦxi(x) = f (x).

5. Definiteness: We will show that for any f ∈ H0 and x ∈ X, we have bounded f (x). From the reproducing
property, it suffices to show that 〈 f ,Φx〉2 6 〈 f , f 〉〈Φx,Φx〉 for any x ∈ X. Can you show that 〈·, ·〉 is a PDS
kernel? Then the result will follow from Lemma 2.1.

6. From properties 1,2,3,5, it follows that H0 is a pre-Hilbert space which can be made complete to form the
Hilbert space H=H0, where H0 is dense in H. This Hilbert space H is the RKHS associated with the kernel
K.
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