Lecture-05: PDS Kernels

1 PDS Kernels

Definition 1.1 (Normalized kernels). To any kernel K, we can associate a normalized kernel $K^{\prime}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ defined for all $x, y \in X$ by

$$
K^{\prime}(x, y)= \begin{cases}\frac{K(x, y)}{\sqrt{K(x, x) K(y, y)}}, & K(x, x) K(y, y) \neq 0 \\ 0, & K(x, x) K(y, y)=0\end{cases}
$$

Remark 1. For any $x \in X$ such that $K(x, x) \neq 0$, we have $K^{\prime}(x, x)=1$.
Example 1.2 (Gaussian kernel). For $\sigma>0$, let $K: X \times X \rightarrow \mathbb{R}$ be defined as $K(x, y)=\exp \left(\frac{\langle x, y\rangle}{\sigma^{2}}\right)$. The normalized kernel associated with this kernel is the Gaussian kernel $K^{\prime}: \mathcal{X} \times X \rightarrow \mathbb{R}$ with parameter $\sigma>0$, defined for all $x, y \in X$ as

$$
K^{\prime}(x, y)=\exp \left(\frac{1}{2 \sigma^{2}}\left(2\langle x, y\rangle-\|x\|^{2}-\|y\|^{2}\right)\right)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

1.1 Properties

Lemma 1.3 (Normalized PDS kernels). Let K be a PDS kernel. Then, the normalized kernel K^{\prime} associated to K is PDS.

Proof. Consider an m-sized sample $S=\left(x_{1}, \ldots, x_{m}\right) \in X^{m}$. We will show that the gram matrix \mathbf{K}^{\prime} generated by the sample S and kernel K^{\prime} is SPSD. Symmetry of K^{\prime} follows from the symmetry of K, and hence the gram matrix \mathbf{K}^{\prime} is symmetric.

To see the positive semi-definiteness of the gram matrix \mathbf{K}^{\prime}, we note that its (i, j)-th entry $\mathbf{K}^{\prime}\left(x_{i}, x_{j}\right)=$ $\frac{\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle_{\mathbb{H}}}{\left\|\Phi\left(x_{i}\right)\right\|_{\mathbb{H}}\left\|\Phi\left(x_{j}\right)\right\|_{\mathbb{H}}}$. Hence, for any arbitrary vector $c \in \mathbb{R}^{m}$, we have

$$
\sum_{i, j=1}^{m} c_{i} K^{\prime}\left(x_{i}, x_{j}\right) c_{j}=\sum_{i, j=1}^{m} c_{i} \frac{K\left(x_{i}, x_{j}\right)}{\sqrt{K\left(x_{i}, x_{i}\right) K\left(x_{j}, x_{j}\right)}} c_{j}=\sum_{i, j=1}^{m} c_{i} \frac{\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle_{\mathbb{H}}}{\left\|\Phi\left(x_{i}\right)\right\|_{\mathbb{H}}\left\|\Phi\left(x_{j}\right)\right\|_{\mathbb{H}}} c_{j}=\left\|\sum_{i=1}^{m} \frac{c_{i} \Phi\left(x_{i}\right)}{\left\|\Phi\left(x_{i}\right)\right\|_{\mathbb{H}}}\right\|_{\mathbb{H}}^{2} \geqslant 0 .
$$

Advantages of working with kernel is that no explicit definition of a feature map Φ is needed.
Following are the advantages of working with explicit feature map Φ.
(i) For primal method in various optimization problems.
(ii) To derive an approximation based on Φ.
(iii) Theoretical analysis where Φ is more convenient.

Definition 1.4 (Empirical kernel map). Given a sample $S=\left(x_{1}, \ldots, x_{m}\right) \in X^{m}$ and a PDS kernel K, the associated empirical kernel map Φ is a feature mapping defined for all $x \in \mathcal{X}$ by

$$
\Phi(x)=\left[\begin{array}{c}
K\left(x, x_{1}\right) \\
\vdots \\
K\left(x, x_{m}\right)
\end{array}\right] .
$$

Remark 2. The empirical kernel map evaluated at a point x is the vector of K-similarity measure of x with each of the training points.

Remark 3. For any $i \in[m]$, we have $\Phi\left(x_{i}\right)=\mathbf{K} e_{i}$, where e_{i} is the i-th unit vector. Hence,

$$
\left\langle\mathbf{K} e_{i}, \mathbf{K} e_{j}\right\rangle=\left\langle e_{i}, \mathbf{K}^{2} e_{j}\right\rangle .
$$

That is, the kernel matrix associated with the empirical kernel map Φ is \mathbf{K}^{2}.
Definition 1.5. Let \mathbf{K}^{\dagger} denote the pseudo-inverse of the gram matrix \mathbf{K} and let $\left(\mathbf{K}^{\dagger}\right)^{\frac{1}{2}}$ denote the SPSD matrix whose square is \mathbf{K}^{\dagger}. We define a feature map $\Psi: X \times X \rightarrow \mathbb{R}$ using the empirical kernel map Φ and the matrix $\left(\mathbf{K}^{\dagger}\right)^{\frac{1}{2}}$ as

$$
\Psi(x)=\left(\mathbf{K}^{\dagger}\right)^{\frac{1}{2}}, \text { for all } x \in \mathcal{X}
$$

Remark 4. Using the identity $\mathbf{K} \mathbf{K}^{\dagger} \mathbf{K}=\mathbf{K}$, we see that

$$
\left\langle\Psi\left(x_{i}\right), \Psi\left(x_{j}\right)\right\rangle=\left\langle\left(\mathbf{K}^{\dagger}\right)^{\frac{1}{2}} \Phi\left(x_{i}\right),\left(\mathbf{K}^{\dagger}\right)^{\frac{1}{2}} \Phi\left(x_{j}\right)\right\rangle=\left\langle\mathbf{K} e_{i}, \mathbf{K}^{\dagger} \mathbf{K} e_{j}\right\rangle=\left\langle e_{i}, \mathbf{K} e_{j}\right\rangle .
$$

Thus, the kernel matrix associated to map Ψ is \mathbf{K}.
Remark 5. For the feature mapping $\Omega: \mathcal{X} \rightarrow \mathbb{R}^{m}$ defined by $\Omega(x)=\mathbf{K}^{\dagger} \Phi(x)$ for all $x \in \mathcal{X}$, we check that the

$$
\left\langle\Omega\left(x_{i}\right), \Omega\left(x_{j}\right)\right\rangle=\left\langle\mathbf{K}^{\dagger} \Phi\left(x_{i}\right), \mathbf{K}^{\dagger} \Phi\left(x_{j}\right)\right\rangle=\left\langle\mathbf{K} e_{i}, \mathbf{K}^{\dagger} e_{j}\right\rangle=\left\langle e_{i}, \mathbf{K K}^{\dagger} e_{j}\right\rangle .
$$

Thus, the kernel matrix associated to map Ω is $\mathbf{K K}{ }^{\dagger}$.
Definition 1.6 (Tensor product). The tensor product of two kernels K_{1}, K_{2} is denoted by $K_{1} \otimes K_{2}: X^{4} \rightarrow \mathbb{R}$ and defined for all $x_{1}, y_{1}, x_{2}, y_{2} \in \mathcal{X}$ as

$$
\left(K_{1} \otimes K_{2}\right)\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=K_{1}\left(x_{1}, y_{1}\right) K_{2}\left(x_{2}, y_{2}\right) .
$$

Theorem 1.7 (Closure properties of PDS kernels). PDS kernels are closed under sum, product, tensor product, point-wise limit, and composition with a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ with $a_{n} \geqslant 0$ for all $n \in \mathbb{N}$.
Proof. Let $\left(K_{n}: n\right.$ in $\left.\mathbb{N}\right)$ be a sequence of PDS kernels on $\mathbb{R}^{X \times x}$, and let \mathbf{K}_{n} be the gram matrix generated by a sample $S=\left(x_{1}, \ldots, x_{m}\right) \in X^{m}$ for the kernel K_{n} for each $n \in \mathbb{N}$.
(i) It suffices to show that $\mathbf{K}_{1}+\mathbf{K}_{2}$ is SPSD. Since $\mathbf{K}_{1}, \mathbf{K}_{2}$ are SPSD, it follows that $\mathbf{K}_{1}+\mathbf{K}_{2}$ is symmetric. From the linearity of inner products and positive semi definiteness of $\mathbf{K}_{1}, \mathbf{K}_{2}$, we have $\left\langle c,\left(\mathbf{K}_{1}+\mathbf{K}_{2}\right) c\right\rangle=$ $\left\langle c, \mathbf{K}_{1}, c\right\rangle+\left\langle c, \mathbf{K}_{2}, c\right\rangle \geqslant 0$ for any $c \in \mathbb{R}^{m}$.
(ii) It suffices to show that the matrix $\mathbf{K}_{i j}=\left[\left(\mathbf{K}_{1}\right)_{i j}\left(\mathbf{K}_{2}\right)_{i j}\right]$ is SPSD. Symmetry follows from the symmetry of SPSD matrices \mathbf{K}_{1} and \mathbf{K}_{2}.
Since \mathbf{K}_{1} is SPSD, we have $\mathbf{K}_{1}=\mathbf{M} \mathbf{M}^{T}$ by singular value decomposition or Cholesky decomposition. Therefore, $\left(\mathbf{K}_{1}\right)_{i j}\left(\mathbf{K}_{2}\right)_{i j}=\sum_{k=1}^{m} \mathbf{M}_{i k} \mathbf{M}_{j k}\left(\mathbf{K}_{2}\right)_{i j}$ and hence for any $c \in \mathbb{R}^{m}$, we can write

$$
\sum_{i, j=1}^{m} c_{i} c_{j}\left(\sum_{k=1}^{m} \mathbf{M}_{i k} \mathbf{M}_{j k}\right)\left(\mathbf{K}_{2}\right)_{i j}=\sum_{k=1}^{m} \sum_{i, j=1}^{m}\left(c_{i} \mathbf{M}_{i k}\right)\left(\mathbf{K}_{2}\right)_{i j}\left(c_{j} \mathbf{M}_{j k}\right) .
$$

Defining $z_{k}=\left(c_{i} \mathbf{M}_{i k}: i \in[m]\right)$, we see that $c^{T} \mathbf{K} c=\sum_{k=1}^{m} z_{k}^{T} \mathbf{K}_{2} z_{k} \geqslant 0$.
(iii) The tensor product of two kernels K_{1}, K_{2} can be thought of as the product of two PDS kernels

$$
\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \mapsto K_{1}\left(x_{1}, y_{1}\right), \quad\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \mapsto K_{2}\left(x_{2}, y_{2}\right) .
$$

(iv) Let K be the point-wise limit of the sequence of PDS kernels ($K_{n}: n \in \mathbb{N}$). Let \mathbf{K} be the gram matrix generated by the map K and the sample $S=\left(x_{1}, \ldots, x_{m}\right) \in X^{m}$. Symmetry of \mathbf{K} follows from the symmetry of each \mathbf{K}_{n}. From the continuity of inner products, we have for any $c \in \mathbb{R}^{m}$

$$
0 \leqslant\left\langle c, \mathbf{K}_{n} c\right\rangle=\langle c, \mathbf{K} c\rangle .
$$

(v) Let's assume that K is a PDS kernel with $|K(x, y)|<\rho$ for all $x, y \in \mathcal{X}$, and let $f: x \mapsto \sum_{n=0}^{\infty} a_{n} x^{n}$, be a power series with $a_{n} \geqslant 0$ and radius of convergence ρ. Then, for any $n \in \mathbb{N}$, both K^{n} and thus $a_{n} K^{n}$ are PDS by closure under product. For any $N \in \mathbb{N}$, the sum $\sum_{n=0}^{N} a_{n} K^{n}$ is PDS by closure under sum of PDS kernels $\left(a_{n} K^{n}: n \geqslant 0\right)$ and $f \circ K$ is PDS by closure under the limit of $\sum_{n=0}^{N} a_{n} K^{n}$ as $N \rightarrow \infty$.

Example 1.8 (Gaussian kernels). For any PDS kernel K, the kernel $\exp (K)$ is also PDS since it can be written as a power series with an infinite radius of convergence. We can check that a kernel $K: X \times X \rightarrow \mathbb{R}$ defined by $K(x, y)=\langle x, y\rangle$ for all $x, y \in X$ is PDS kernel, and hence $K^{\prime}=\exp (K)$ defined by $K^{\prime}(x, y)=\exp \left(\frac{\langle x, y\rangle}{\sigma^{2}}\right)$ for all $x, y \in \mathcal{X}$ is PDS kernel. Therefore, the Gaussian kernel is PDS since it is normalized kernel of K^{\prime}.

1.2 Kernel-based algorithms

We can generalize SVMs in the input space X to the SVMs in the feature space \mathbb{H} mapped by the feature mapping Φ. Recall that $K(x, y)=\langle\Phi(x), \Phi(y)\rangle$ for all $x, y \in \mathcal{X}$, and hence the gram matrix \mathbf{K} generated by the kernel map K and the training sample $S=\left(x_{1}, \ldots, x_{m}\right)$ suffices to describe the SVM solution completely.

Defining Hadamard product of two vectors $x, y \in \mathbb{R}^{m}$ as $x \circ y \in \mathbb{R}^{m}$ such that $(x \circ y)_{i}=x_{i} y_{i}$, we can write the dual problem for non-separable training data in this high dimensional space \mathbb{H} as

$$
\begin{array}{r}
\max _{\alpha} \mathbf{1}^{T} \alpha-\frac{1}{2}(\alpha \circ y)^{T} \mathbf{K}(\alpha \circ y) \\
\text { subject to: } 0 \leqslant \alpha \leqslant C \text { and } \alpha^{T} y=0 .
\end{array}
$$

The solution hypothesis h can be written as

$$
h(x)=\operatorname{sign}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} K\left(x_{i}, x\right)+b\right)
$$

where $b=y_{i}-(\alpha \circ y)^{T} \mathbf{K} e_{i}$ for all x_{i} such that $0<\alpha_{i}<C$.

1.3 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combination of the functions $K\left(x_{i}, \cdot\right)$, where x_{i} is a sample point. The following theorem known as the representer theorem shows that this is in fact a general property that holds for a broad class of optimization problems, including that of SVMs with no offset.

Theorem 1.9 (Representer theorem). Let $K: X \times X \rightarrow \mathbb{R}$ be a PDS kernel and \mathbb{H} its corresponding RKHS. Then for any non decreasing function $G: \mathbb{R} \rightarrow \mathbb{R}$ and any loss function $L: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$, the optimization problem

$$
\arg \min _{h \in \mathbb{H}} F(h)=\arg \min _{h \in \mathbb{H}} G\left(\|h\|_{\mathbb{H}}\right)+L\left(h\left(x_{1}\right), \ldots, h\left(x_{m}\right)\right),
$$

has a solution of the form $h^{*}=\sum_{i=1}^{m} \alpha_{i} K\left(x_{i}, \cdot\right)$. If G is strictly increasing, then any solution has this form.
Proof. Let $\mathbb{H}_{1}=\operatorname{span}\left(K\left(x_{i}, \cdot\right): i \in[m]\right)$. We can write the RKHS \mathbb{H} as the direct sum of span of $\left(K\left(x_{i}, \cdot\right): i \in[m]\right)$ and the orthogonal space \mathbb{H}^{\perp}, i.e. $\mathbb{H}=\mathbb{H}_{1} \oplus \mathbb{H}^{\perp}$. Hence, any hypothesis $h \in \mathbb{H}$, can be written as $h=h_{1}+h^{\perp}$. Since G is non-decreasing

$$
G\left(\left\|h_{1}\right\|_{\mathbb{H}}\right) \leqslant G\left(\sqrt{\left\|h_{1}\right\|_{\mathbb{H}}^{2}+\left\|h^{\perp}\right\|_{\mathbb{H}}^{2}}\right)=G\left(\|h\|_{\mathbb{H}}\right) .
$$

By the reproducing property, we have for all $i \in[m]$

$$
h\left(x_{i}\right)=\left\langle h, K\left(x_{i}, \cdot\right)\right\rangle=\left\langle h_{1}, K\left(x_{i}, \cdot\right)\right\rangle=h_{1}\left(x_{i}\right) .
$$

Therefore, $L\left(h\left(x_{1}\right), \ldots, h\left(x_{m}\right)\right)=L\left(h_{1}\left(x_{1}\right), \ldots, h_{1}\left(x_{m}\right)\right)$, and hence $F\left(h_{1}\right) \leqslant F(h)$. If G is strictly increasing, then $F\left(h_{1}\right)<F(h)$ when $\left\|h^{\perp}\right\|_{\mathbb{H}}>0$ and any solution of the optimization problem must be in \mathbb{H}_{1}.

