Lecture-05: PDS Kernels

1 PDS Kernels

Definition 1.1 (Normalized kernels). To any kernel K, we can associate a normalized kernel K’ : X x X — R
defined for all x,y € X by

LKW koK .
K'(x,y) = { VK&IKGD)’ (x,2)K () # 0,
o K(x,x)K(y,y) = 0.

Remark 1. For any x € X such that K(x,x) # 0, we have K’(x,x) = 1.

Example 1.2 (Gaussian kernel). For 6 > 0, let K : X x X — R be defined as K(x,y) = exp (< >> The normal-

ized kernel associated with this kernel is the Gaussian kernel K’ : X x X — R with parameter ¢ > 0, defined for

all x,y € X as
K B ' 2 0 lx—y|?
(x,y) = exp 7262( o) = lIxlI* = Iyll") | =exp | — 552 |

1.1 Properties

Lemma 1.3 (Normalized PDS Kkernels). Let K be a PDS kernel. Then, the normalized kernel K' associated to K
is PDS.

Proof. Consider an m-sized sample S = (x1,...,x,) € X™. We will show that the gram matrix K’ generated by
the sample S and kernel K’ is SPSD. Symmetry of K’ follows from the symmetry of K, and hence the gram matrix
K’ is symmetric.
To see the positive semi-definiteness of the gram matrix K', we note that its (i, j)-th entry K'(x;,x;) =
(@) @)

——~ /B Hence, for any arbitrary vector ¢ € R™, we have
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ciK'(xi,x}) ci= Ci > 0.
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Advantages of working with kernel is that no explicit definition of a feature map P is needed.

Following are the advantages of working with explicit feature map &.
(i) For primal method in various optimization problems.
(i1) To derive an approximation based on &.

(iii) Theoretical analysis where @ is more convenient.

Definition 1.4 (Empirical kernel map). Given a sample S = (x1,...,x,) € X" and a PDS kernel K, the associated
empirical kernel map @ is a feature mapping defined for all x € X by

K(x,x1)
D(x) = :
K(x,x)

Remark 2. The empirical kernel map evaluated at a point x is the vector of K-similarity measure of x with each of
the training points.



Remark 3. For any i € [m], we have ®(x;) = Ke;, where ¢; is the i-th unit vector. Hence,
<Ke,,Ke]> <e,,K e]>
That is, the kernel matrix associated with the empirical kernel map ® is K.

Definition 1.5. Let K’ denote the pseudo-inverse of the gram matrix K and let (K*)% denote the SPSD matrix
whose square is K. We define a feature map ¥ : X x X — R using the empirical kernel map & and the matrix

(KM)? as
W(x) = (K)?, forall x € X.
Remark 4. Using the identity KKK = K, we see that

(), ¥(x)) = (K 3b(xy), (KN F(x)) ) = (Kei, KTKey) = (e1,Key).

Thus, the kernel matrix associated to map ¥ is K.
Remark 5. For the feature mapping Q : X — R™ defined by Q(x) = K'®(x) for all x € X, we check that the

(Q(x),Q(x))) = (K'd(x;), K'®(x;)) = (Kei, K'e;) = (e;, KKe;).
Thus, the kernel matrix associated to map € is KK,

Definition 1.6 (Tensor product). The tensor product of two kernels K, K> is denoted by K| ® K5 : X* - R and
defined for all x,y;,x2,y2 € X as

(K1 ®K2)(x1,%2,y1,¥2) = Ki (x1,y1) K2 (%2, ¥2).

Theorem 1.7 (Closure properties of PDS kernels). PDS kernels are closed under sum, product, tensor product,
point-wise limit, and composition with a power series Y a,x" with a, > 0 for all n € N.

Proof. Let (K, : n inN) be a sequence of PDS kernels on RX*X | and let K,, be the gram matrix generated by a
sample S = (x1,...,x,) € X™ for the kernel K,, for each n € N.

(i) It suffices to show that K; + K, is SPSD. Since K;,K; are SPSD, it follows that K; 4+ K is symmetric.
From the linearity of inner products and positive semi definiteness of K;,K;, we have (¢, (K; +Kj)c) =
(e,K1,¢)+ {c,Ka,c) > 0 for any c € R™.

(ii) It suffices to show that the matrix K;; = [(K{);;(K2);;] is SPSD. Symmetry follows from the symmetry of
SPSD matrices K; and K».

Since K is SPSD, we have K; = MM by singular value decomposition or Cholesky decomposition. There-
fore, (K1);;(K2)ij = Liv; MM (K3 );; and hence for any ¢ € R”, we can write

m

m m
Z cicj ZM’/‘M/]‘ )(K2)ij Z Z M) (K2)ij(c;M ).

ij=1 k=1

Defining z; = (¢;My : i € [m]), we see that ' Kc =Y, zZKzzk > 0.
(iii) The tensor product of two kernels K;, K> can be thought of as the product of two PDS kernels
(x1,%2,¥1,¥2) — Ki(x1,31), (x1,%2,¥1,y2) = Ka(x2,y2)-

(iv) Let K be the point-wise limit of the sequence of PDS kernels (K, : n € N). Let K be the gram matrix
generated by the map K and the sample S = (xy,...,x,) € X". Symmetry of K follows from the symmetry
of each K,,. From the continuity of inner products, we have for any ¢ € R™

0 < (¢, Kyc) = (¢, Kc).

(v) Let’s assume that K is a PDS kernel with |K(x,y)| < p for all x,y € X, and let f : x+— Y ;a,x", be a power
series with a, > 0 and radius of convergence p. Then, for any n € N, both K" and thus a,K" are PDS by
closure under product. For any N € N, the sum ZI,Y:O a,K™ is PDS by closure under sum of PDS kernels
(a,K" :n>0) and foK is PDS by closure under the limit of ¥ a,K" as N — oo.

O



Example 1.8 (Gaussian kernels). For any PDS kernel K, the kernel exp(K) is also PDS since it can be written
as a power series with an infinite radius of convergence. We can check that a kernel K : X x X — R defined

by K(x,y) = {(x,y) for all x,y € X is PDS kernel, and hence K’ = exp(K) defined by K’ (x,y) = exp (%—?) for

all x,y € X is PDS kernel. Therefore, the Gaussian kernel is PDS since it is normalized kernel of K'.

1.2 Kernel-based algorithms

We can generalize SVMs in the input space X to the SVMs in the feature space H mapped by the feature mapping
®. Recall that K(x,y) = (®(x),D(y)) for all x,y € X, and hence the gram matrix K generated by the kernel map
K and the training sample S = (x1,...,x,) suffices to describe the SVM solution completely.

Defining Hadamard product of two vectors x,y € R™ as xoy € R™ such that (xoy); = x;y;, we can write the
dual problem for non-separable training data in this high dimensional space H as

1
max1” o — E(a 0y)TK(aoy)
o
subject to: 0 < o < C and aTy =0.

The solution hypothesis 4 can be written as
m
h(x) =sign | Y o4yiK (x;,x)+b | ,
i=1

where b = y; — (a0 y)TKe; for all x; such that 0 < o; < C.

1.3 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combination of the
functions K(x;,-), where x; is a sample point. The following theorem known as the representer theorem shows
that this is in fact a general property that holds for a broad class of optimization problems, including that of SVMs
with no offset.

Theorem 1.9 (Representer theorem). Let K : X X X — R be a PDS kernel and H its corresponding RKHS. Then
Sor any non decreasing function G : R — R and any loss function L : R™ — RU {+eo} , the optimization problem

argggﬁF(h) = argr}gﬂr{}G(HhHH) +L(h(x1),...,h(xn)),

has a solution of the form h* =Y | oK (x;,-). If G is strictly increasing, then any solution has this form.

Proof. Let H = span(K(x;,-) : i € [m]). We can write the RKHS H as the direct sum of span of (K(x;,-) :i € [m])
and the orthogonal space H*, i.e. H = H; @ H". Hence, any hypothesis 4 € H, can be written as # = hy +h*.

Since G is non-decreasing
2
Gl i) < GO/ Ml I+ (| [[5) = Ul w)-

By the reproducing property, we have for all i € [m]
h(xi) = <h’K<xi7 )> = <h1’K(xi7 )> =h (xi)'

Therefore, L(h(x1),...,h(xm)) = L(h1(x1),...,h1(xn)), and hence F(h;) < F(h). If G is strictly increasing, then
F(h1) < F(h) when HhL HH > 0 and any solution of the optimization problem must be in Hj. O
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