Lecture-05: PDS Kernels

1 PDS Kernels

Definition 1.1 (Normalized kernels). To any kernel *K*, we can associate a **normalized kernel** $K' : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ defined for all $x, y \in \mathfrak{X}$ by

$$K'(x,y) = \begin{cases} \frac{K(x,y)}{\sqrt{K(x,x)K(y,y)}}, & K(x,x)K(y,y) \neq 0, \\ 0, & K(x,x)K(y,y) = 0. \end{cases}$$

Remark 1. For any $x \in \mathcal{X}$ such that $K(x, x) \neq 0$, we have K'(x, x) = 1.

Example 1.2 (Gaussian kernel). For $\sigma > 0$, let $K : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ be defined as $K(x, y) = \exp\left(\frac{\langle x, y \rangle}{\sigma^2}\right)$. The normalized kernel associated with this kernel is the **Gaussian kernel** $K' : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ with parameter $\sigma > 0$, defined for all $x, y \in \mathfrak{X}$ as

$$K'(x,y) = \exp\left(\frac{1}{2\sigma^2}(2\langle x, y \rangle - ||x||^2 - ||y||^2)\right) = \exp\left(-\frac{||x-y||^2}{2\sigma^2}\right).$$

1.1 Properties

Lemma 1.3 (Normalized PDS kernels). Let K be a PDS kernel. Then, the normalized kernel K' associated to K is PDS.

Proof. Consider an *m*-sized sample $S = (x_1, ..., x_m) \in \mathcal{X}^m$. We will show that the gram matrix \mathbf{K}' generated by the sample *S* and kernel K' is SPSD. Symmetry of K' follows from the symmetry of *K*, and hence the gram matrix \mathbf{K}' is symmetric.

To see the positive semi-definiteness of the gram matrix \mathbf{K}' , we note that its (i, j)-th entry $\mathbf{K}'(x_i, x_j) = \frac{\langle \Phi(x_i), \Phi(x_j) \rangle_{\mathbb{H}}}{\|\Phi(x_i)\|_{\mathbb{H}} \|\Phi(x_j)\|_{\mathbb{H}}}$. Hence, for any arbitrary vector $c \in \mathbb{R}^m$, we have

$$\sum_{i,j=1}^{m} c_i K'(x_i, x_j) c_j = \sum_{i,j=1}^{m} c_i \frac{K(x_i, x_j)}{\sqrt{K(x_i, x_i)K(x_j, x_j)}} c_j = \sum_{i,j=1}^{m} c_i \frac{\left\langle \Phi(x_i), \Phi(x_j) \right\rangle_{\mathbb{H}}}{\left\| \Phi(x_j) \right\|_{\mathbb{H}}} c_j = \left\| \sum_{i=1}^{m} \frac{c_i \Phi(x_i)}{\left\| \Phi(x_i) \right\|_{\mathbb{H}}} \right\|_{\mathbb{H}}^2 \ge 0.$$

Advantages of working with kernel is that no explicit definition of a feature map Φ is needed.

Following are the advantages of working with explicit feature map Φ .

- (i) For primal method in various optimization problems.
- (ii) To derive an approximation based on Φ .
- (iii) Theoretical analysis where Φ is more convenient.

Definition 1.4 (Empirical kernel map). Given a sample $S = (x_1, ..., x_m) \in \mathcal{X}^m$ and a PDS kernel *K*, the associated **empirical kernel map** Φ is a feature mapping defined for all $x \in \mathcal{X}$ by

$$\Phi(x) = \begin{bmatrix} K(x,x_1) \\ \vdots \\ K(x,x_m) \end{bmatrix}.$$

Remark 2. The empirical kernel map evaluated at a point *x* is the vector of *K*-similarity measure of *x* with each of the training points.

Remark 3. For any $i \in [m]$, we have $\Phi(x_i) = \mathbf{K}e_i$, where e_i is the *i*-th unit vector. Hence,

$$\langle \mathbf{K} e_i, \mathbf{K} e_j \rangle = \langle e_i, \mathbf{K}^2 e_j \rangle$$

That is, the kernel matrix associated with the empirical kernel map Φ is \mathbf{K}^2 .

Definition 1.5. Let \mathbf{K}^{\dagger} denote the pseudo-inverse of the gram matrix \mathbf{K} and let $(\mathbf{K}^{\dagger})^{\frac{1}{2}}$ denote the SPSD matrix whose square is \mathbf{K}^{\dagger} . We define a feature map $\Psi : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ using the empirical kernel map Φ and the matrix $(\mathbf{K}^{\dagger})^{\frac{1}{2}}$ as

$$\Psi(x) = (\mathbf{K}^{\dagger})^{\frac{1}{2}}, \text{ for all } x \in \mathfrak{X}.$$

Remark 4. Using the identity $\mathbf{K}\mathbf{K}^{\dagger}\mathbf{K} = \mathbf{K}$, we see that

$$\left\langle \Psi(x_i), \Psi(x_j) \right\rangle = \left\langle (\mathbf{K}^{\dagger})^{\frac{1}{2}} \Phi(x_i), (\mathbf{K}^{\dagger})^{\frac{1}{2}} \Phi(x_j) \right\rangle = \left\langle \mathbf{K} e_i, \mathbf{K}^{\dagger} \mathbf{K} e_j \right\rangle = \left\langle e_i, \mathbf{K} e_j \right\rangle$$

Thus, the kernel matrix associated to map Ψ is **K**.

Remark 5. For the feature mapping $\Omega : \mathfrak{X} \to \mathbb{R}^m$ defined by $\Omega(x) = \mathbf{K}^{\dagger} \Phi(x)$ for all $x \in \mathfrak{X}$, we check that the

$$\langle \Omega(x_i), \Omega(x_j) \rangle = \langle \mathbf{K}^{\dagger} \Phi(x_i), \mathbf{K}^{\dagger} \Phi(x_j) \rangle = \langle \mathbf{K} e_i, \mathbf{K}^{\dagger} e_j \rangle = \langle e_i, \mathbf{K} \mathbf{K}^{\dagger} e_j \rangle.$$

Thus, the kernel matrix associated to map Ω is **KK**[†].

Definition 1.6 (Tensor product). The **tensor product** of two kernels K_1, K_2 is denoted by $K_1 \otimes K_2 : \mathfrak{X}^4 \to \mathbb{R}$ and defined for all $x_1, y_1, x_2, y_2 \in \mathfrak{X}$ as

$$(K_1 \otimes K_2)(x_1, x_2, y_1, y_2) = K_1(x_1, y_1)K_2(x_2, y_2)$$

Theorem 1.7 (Closure properties of PDS kernels). *PDS kernels are closed under sum, product, tensor product, point-wise limit, and composition with a power series* $\sum_{n=0}^{\infty} a_n x^n$ *with* $a_n \ge 0$ *for all* $n \in \mathbb{N}$.

Proof. Let $(K_n : n \ in\mathbb{N})$ be a sequence of PDS kernels on $\mathbb{R}^{X \times X}$, and let \mathbf{K}_n be the gram matrix generated by a sample $S = (x_1, \dots, x_m) \in \mathcal{X}^m$ for the kernel K_n for each $n \in \mathbb{N}$.

- (i) It suffices to show that $\mathbf{K}_1 + \mathbf{K}_2$ is SPSD. Since $\mathbf{K}_1, \mathbf{K}_2$ are SPSD, it follows that $\mathbf{K}_1 + \mathbf{K}_2$ is symmetric. From the linearity of inner products and positive semi definiteness of $\mathbf{K}_1, \mathbf{K}_2$, we have $\langle c, (\mathbf{K}_1 + \mathbf{K}_2)c \rangle = \langle c, \mathbf{K}_1, c \rangle + \langle c, \mathbf{K}_2, c \rangle \ge 0$ for any $c \in \mathbb{R}^m$.
- (ii) It suffices to show that the matrix $\mathbf{K}_{ij} = [(\mathbf{K}_1)_{ij}(\mathbf{K}_2)_{ij}]$ is SPSD. Symmetry follows from the symmetry of SPSD matrices \mathbf{K}_1 and \mathbf{K}_2 .

Since \mathbf{K}_1 is SPSD, we have $\mathbf{K}_1 = \mathbf{M}\mathbf{M}^T$ by singular value decomposition or Cholesky decomposition. Therefore, $(\mathbf{K}_1)_{ij}(\mathbf{K}_2)_{ij} = \sum_{k=1}^m \mathbf{M}_{ik}\mathbf{M}_{jk}(\mathbf{K}_2)_{ij}$ and hence for any $c \in \mathbb{R}^m$, we can write

$$\sum_{i,j=1}^{m} c_i c_j (\sum_{k=1}^{m} \mathbf{M}_{ik} \mathbf{M}_{jk}) (\mathbf{K}_2)_{ij} = \sum_{k=1}^{m} \sum_{i,j=1}^{m} (c_i \mathbf{M}_{ik}) (\mathbf{K}_2)_{ij} (c_j \mathbf{M}_{jk})$$

Defining $z_k = (c_i \mathbf{M}_{ik} : i \in [m])$, we see that $c^T \mathbf{K} c = \sum_{k=1}^m z_k^T \mathbf{K}_2 z_k \ge 0$.

(iii) The tensor product of two kernels K_1, K_2 can be thought of as the product of two PDS kernels

$$(x_1, x_2, y_1, y_2) \mapsto K_1(x_1, y_1),$$
 $(x_1, x_2, y_1, y_2) \mapsto K_2(x_2, y_2).$

(iv) Let *K* be the point-wise limit of the sequence of PDS kernels $(K_n : n \in \mathbb{N})$. Let **K** be the gram matrix generated by the map *K* and the sample $S = (x_1, \ldots, x_m) \in \mathcal{X}^m$. Symmetry of **K** follows from the symmetry of each **K**_n. From the continuity of inner products, we have for any $c \in \mathbb{R}^m$

$$0 \leq \langle c, \mathbf{K}_n c \rangle = \langle c, \mathbf{K} c \rangle$$

(v) Let's assume that *K* is a PDS kernel with $|K(x,y)| < \rho$ for all $x, y \in \mathcal{X}$, and let $f : x \mapsto \sum_{n=0}^{\infty} a_n x^n$, be a power series with $a_n \ge 0$ and radius of convergence ρ . Then, for any $n \in \mathbb{N}$, both K^n and thus $a_n K^n$ are PDS by closure under product. For any $N \in \mathbb{N}$, the sum $\sum_{n=0}^{N} a_n K^n$ is PDS by closure under sum of PDS kernels $(a_n K^n : n \ge 0)$ and $f \circ K$ is PDS by closure under the limit of $\sum_{n=0}^{N} a_n K^n$ as $N \to \infty$.

Example 1.8 (Gaussian kernels). For any PDS kernel *K*, the kernel $\exp(K)$ is also PDS since it can be written as a power series with an infinite radius of convergence. We can check that a kernel $K : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ defined by $K(x,y) = \langle x, y \rangle$ for all $x, y \in \mathfrak{X}$ is PDS kernel, and hence $K' = \exp(K)$ defined by $K'(x,y) = \exp\left(\frac{\langle x, y \rangle}{\sigma^2}\right)$ for all $x, y \in \mathfrak{X}$ is PDS kernel. Therefore, the Gaussian kernel is PDS since it is normalized kernel of K'.

1.2 Kernel-based algorithms

We can generalize SVMs in the input space \mathcal{X} to the SVMs in the feature space \mathbb{H} mapped by the feature mapping Φ . Recall that $K(x,y) = \langle \Phi(x), \Phi(y) \rangle$ for all $x, y \in \mathcal{X}$, and hence the gram matrix **K** generated by the kernel map *K* and the training sample $S = (x_1, \ldots, x_m)$ suffices to describe the SVM solution completely.

Defining Hadamard product of two vectors $x, y \in \mathbb{R}^m$ as $x \circ y \in \mathbb{R}^m$ such that $(x \circ y)_i = x_i y_i$, we can write the dual problem for non-separable training data in this high dimensional space \mathbb{H} as

$$\max_{\alpha} \mathbf{1}^T \alpha - \frac{1}{2} (\alpha \circ y)^T \mathbf{K} (\alpha \circ y)$$
subject to: $0 \leq \alpha \leq C$ and $\alpha^T y = 0$.

The solution hypothesis h can be written as

$$h(x) = \operatorname{sign}\left(\sum_{i=1}^{m} \alpha_i y_i K(x_i, x) + b\right),$$

where $b = y_i - (\alpha \circ y)^T \mathbf{K} e_i$ for all x_i such that $0 < \alpha_i < C$.

1.3 Representer theorem

Observe that modulo the offset *b*, the hypothesis solution of SVMs can be written as a linear combination of the functions $K(x_i, \cdot)$, where x_i is a sample point. The following theorem known as the representer theorem shows that this is in fact a general property that holds for a broad class of optimization problems, including that of SVMs with no offset.

Theorem 1.9 (Representer theorem). Let $K : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ be a PDS kernel and \mathbb{H} its corresponding RKHS. Then for any non decreasing function $G : \mathbb{R} \to \mathbb{R}$ and any loss function $L : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$, the optimization problem

$$\arg\min_{h\in\mathbb{H}}F(h) = \arg\min_{h\in\mathbb{H}}G(\|h\|_{\mathbb{H}}) + L(h(x_1),\ldots,h(x_m)),$$

has a solution of the form $h^* = \sum_{i=1}^m \alpha_i K(x_i, \cdot)$. If G is strictly increasing, then any solution has this form.

Proof. Let $\mathbb{H}_1 = \text{span}(K(x_i, \cdot) : i \in [m])$. We can write the RKHS \mathbb{H} as the direct sum of span of $(K(x_i, \cdot) : i \in [m])$ and the orthogonal space \mathbb{H}^{\perp} , i.e. $\mathbb{H} = \mathbb{H}_1 \oplus \mathbb{H}^{\perp}$. Hence, any hypothesis $h \in \mathbb{H}$, can be written as $h = h_1 + h^{\perp}$. Since *G* is non-decreasing

$$G(\|h_1\|_{\mathbb{H}}) \leqslant G(\sqrt{\|h_1\|_{\mathbb{H}}^2 + \|h^{\perp}\|_{\mathbb{H}}^2}) = G(\|h\|_{\mathbb{H}}).$$

By the reproducing property, we have for all $i \in [m]$

$$h(x_i) = \langle h, K(x_i, \cdot) \rangle = \langle h_1, K(x_i, \cdot) \rangle = h_1(x_i).$$

Therefore, $L(h(x_1), \ldots, h(x_m)) = L(h_1(x_1), \ldots, h_1(x_m))$, and hence $F(h_1) \leq F(h)$. If *G* is strictly increasing, then $F(h_1) < F(h)$ when $||h^{\perp}||_{\mathbb{H}} > 0$ and any solution of the optimization problem must be in \mathbb{H}_1 .