
Lecture-05: PDS Kernels

1 PDS Kernels
Definition 1.1 (Normalized kernels). To any kernel K, we can associate a normalized kernel K′ : X×X→ R
defined for all x,y ∈ X by

K′(x,y) =


K(x,y)√

K(x,x)K(y,y)
, K(x,x)K(y,y) 6= 0,

0, K(x,x)K(y,y) = 0.

Remark 1. For any x ∈ X such that K(x,x) 6= 0, we have K′(x,x) = 1.

Example 1.2 (Gaussian kernel). For σ > 0, let K : X×X→ R be defined as K(x,y) = exp
(
〈x,y〉
σ2

)
. The normal-

ized kernel associated with this kernel is the Gaussian kernel K′ : X×X→ R with parameter σ > 0, defined for
all x,y ∈ X as

K′(x,y) = exp
(

1
2σ2 (2〈x,y〉−‖x‖

2−‖y‖2)

)
= exp

(
−‖x− y‖2

2σ2

)
.

1.1 Properties
Lemma 1.3 (Normalized PDS kernels). Let K be a PDS kernel. Then, the normalized kernel K′ associated to K
is PDS.

Proof. Consider an m-sized sample S = (x1, . . . ,xm) ∈ Xm. We will show that the gram matrix K′ generated by
the sample S and kernel K′ is SPSD. Symmetry of K′ follows from the symmetry of K, and hence the gram matrix
K′ is symmetric.

To see the positive semi-definiteness of the gram matrix K′, we note that its (i, j)-th entry K′(xi,x j) =
〈Φ(xi),Φ(x j)〉H
‖Φ(xi)‖H‖Φ(x j)‖H

. Hence, for any arbitrary vector c ∈ Rm, we have

m

∑
i, j=1

ciK′(xi,x j)c j =
m

∑
i, j=1

ci
K(xi,x j)√

K(xi,xi)K(x j,x j)
c j =

m

∑
i, j=1

ci

〈
Φ(xi),Φ(x j)

〉
H

‖Φ(xi)‖H
∥∥Φ(x j)

∥∥
H

c j =

∥∥∥∥∥ m

∑
i=1

ciΦ(xi)

‖Φ(xi)‖H

∥∥∥∥∥
2

H

> 0.

Advantages of working with kernel is that no explicit definition of a feature map Φ is needed.

Following are the advantages of working with explicit feature map Φ.

(i) For primal method in various optimization problems.

(ii) To derive an approximation based on Φ.

(iii) Theoretical analysis where Φ is more convenient.

Definition 1.4 (Empirical kernel map). Given a sample S= (x1, . . . ,xm)∈Xm and a PDS kernel K, the associated
empirical kernel map Φ is a feature mapping defined for all x ∈ X by

Φ(x) =

K(x,x1)
...

K(x,xm)

 .
Remark 2. The empirical kernel map evaluated at a point x is the vector of K-similarity measure of x with each of
the training points.
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Remark 3. For any i ∈ [m], we have Φ(xi) = Kei, where ei is the i-th unit vector. Hence,〈
Kei,Ke j

〉
=
〈
ei,K2e j

〉
.

That is, the kernel matrix associated with the empirical kernel map Φ is K2.

Definition 1.5. Let K† denote the pseudo-inverse of the gram matrix K and let (K†)
1
2 denote the SPSD matrix

whose square is K†. We define a feature map Ψ : X×X→ R using the empirical kernel map Φ and the matrix
(K†)

1
2 as

Ψ(x) = (K†)
1
2 , for all x ∈ X.

Remark 4. Using the identity KK†K = K, we see that〈
Ψ(xi),Ψ(x j)

〉
=
〈
(K†)

1
2 Φ(xi),(K†)

1
2 Φ(x j)

〉
=
〈
Kei,K†Ke j

〉
=
〈
ei,Ke j

〉
.

Thus, the kernel matrix associated to map Ψ is K.

Remark 5. For the feature mapping Ω : X→ Rm defined by Ω(x) = K†Φ(x) for all x ∈ X, we check that the〈
Ω(xi),Ω(x j)

〉
=
〈
K†

Φ(xi),K†
Φ(x j)

〉
=
〈
Kei,K†e j

〉
=
〈
ei,KK†e j

〉
.

Thus, the kernel matrix associated to map Ω is KK†.

Definition 1.6 (Tensor product). The tensor product of two kernels K1,K2 is denoted by K1⊗K2 : X4→R and
defined for all x1,y1,x2,y2 ∈ X as

(K1⊗K2)(x1,x2,y1,y2) = K1(x1,y1)K2(x2,y2).

Theorem 1.7 (Closure properties of PDS kernels). PDS kernels are closed under sum, product, tensor product,
point-wise limit, and composition with a power series ∑

∞
n=0 anxn with an > 0 for all n ∈ N.

Proof. Let (Kn : n inN) be a sequence of PDS kernels on RX×X, and let Kn be the gram matrix generated by a
sample S = (x1, . . . ,xm) ∈ Xm for the kernel Kn for each n ∈ N.

(i) It suffices to show that K1 +K2 is SPSD. Since K1,K2 are SPSD, it follows that K1 +K2 is symmetric.
From the linearity of inner products and positive semi definiteness of K1,K2, we have 〈c,(K1 +K2)c〉 =
〈c,K1,c〉+ 〈c,K2,c〉> 0 for any c ∈ Rm.

(ii) It suffices to show that the matrix Ki j = [(K1)i j(K2)i j] is SPSD. Symmetry follows from the symmetry of
SPSD matrices K1 and K2.

Since K1 is SPSD, we have K1 =MMT by singular value decomposition or Cholesky decomposition. There-
fore, (K1)i j(K2)i j = ∑

m
k=1 MikM jk(K2)i j and hence for any c ∈ Rm, we can write

m

∑
i, j=1

cic j(
m

∑
k=1

MikM jk)(K2)i j =
m

∑
k=1

m

∑
i, j=1

(ciMik)(K2)i j(c jM jk).

Defining zk = (ciMik : i ∈ [m]), we see that cT Kc = ∑
m
k=1 zT

k K2zk > 0.

(iii) The tensor product of two kernels K1,K2 can be thought of as the product of two PDS kernels

(x1,x2,y1,y2) 7→ K1(x1,y1), (x1,x2,y1,y2) 7→ K2(x2,y2).

(iv) Let K be the point-wise limit of the sequence of PDS kernels (Kn : n ∈ N). Let K be the gram matrix
generated by the map K and the sample S = (x1, . . . ,xm) ∈ Xm. Symmetry of K follows from the symmetry
of each Kn. From the continuity of inner products, we have for any c ∈ Rm

0 6 〈c,Knc〉= 〈c,Kc〉 .

(v) Let’s assume that K is a PDS kernel with |K(x,y)|< ρ for all x,y ∈X, and let f : x 7→∑
∞
n=0 anxn, be a power

series with an > 0 and radius of convergence ρ . Then, for any n ∈ N, both Kn and thus anKn are PDS by
closure under product. For any N ∈ N, the sum ∑

N
n=0 anKn is PDS by closure under sum of PDS kernels

(anKn : n > 0) and f ◦K is PDS by closure under the limit of ∑
N
n=0 anKn as N→ ∞.
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Example 1.8 (Gaussian kernels). For any PDS kernel K, the kernel exp(K) is also PDS since it can be written
as a power series with an infinite radius of convergence. We can check that a kernel K : X×X→ R defined
by K(x,y) = 〈x,y〉 for all x,y ∈X is PDS kernel, and hence K′ = exp(K) defined by K′(x,y) = exp

(
〈x,y〉
σ2

)
for

all x,y ∈ X is PDS kernel. Therefore, the Gaussian kernel is PDS since it is normalized kernel of K′.

1.2 Kernel-based algorithms
We can generalize SVMs in the input space X to the SVMs in the feature space H mapped by the feature mapping
Φ. Recall that K(x,y) = 〈Φ(x),Φ(y)〉 for all x,y ∈ X, and hence the gram matrix K generated by the kernel map
K and the training sample S = (x1, . . . ,xm) suffices to describe the SVM solution completely.

Defining Hadamard product of two vectors x,y ∈ Rm as x ◦ y ∈ Rm such that (x ◦ y)i = xiyi, we can write the
dual problem for non-separable training data in this high dimensional space H as

max
α

1T
α− 1

2
(α ◦ y)T K(α ◦ y)

subject to: 0 6 α 6C and α
T y = 0.

The solution hypothesis h can be written as

h(x) = sign

(
m

∑
i=1

αiyiK(xi,x)+b

)
,

where b = yi− (α ◦ y)T Kei for all xi such that 0 < αi <C.

1.3 Representer theorem
Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combination of the
functions K(xi, ·), where xi is a sample point. The following theorem known as the representer theorem shows
that this is in fact a general property that holds for a broad class of optimization problems, including that of SVMs
with no offset.

Theorem 1.9 (Representer theorem). Let K : X×X→R be a PDS kernel and H its corresponding RKHS. Then
for any non decreasing function G : R→ R and any loss function L : Rm→ R∪{+∞} , the optimization problem

argmin
h∈H

F(h) = argmin
h∈H

G(‖h‖H)+L(h(x1), . . . ,h(xm)),

has a solution of the form h∗ = ∑
m
i=1 αiK(xi, ·). If G is strictly increasing, then any solution has this form.

Proof. Let H1 = span(K(xi, ·) : i ∈ [m]). We can write the RKHS H as the direct sum of span of (K(xi, ·) : i ∈ [m])
and the orthogonal space H⊥, i.e. H = H1⊕H⊥. Hence, any hypothesis h ∈ H, can be written as h = h1 + h⊥.
Since G is non-decreasing

G(‖h1‖H)6 G(

√
‖h1‖2

H+
∥∥h⊥

∥∥2
H) = G(‖h‖H).

By the reproducing property, we have for all i ∈ [m]

h(xi) = 〈h,K(xi, ·)〉= 〈h1,K(xi, ·)〉= h1(xi).

Therefore, L(h(x1), . . . ,h(xm)) = L(h1(x1), . . . ,h1(xm)), and hence F(h1)6 F(h). If G is strictly increasing, then
F(h1)< F(h) when

∥∥h⊥
∥∥
H > 0 and any solution of the optimization problem must be in H1.
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