Lecture-06: PAC Learning

1 PAC learning model

Definition 1.1 (PAC-learning). A concept class C is said to be PAC-learnable if there exists an algorithm \mathcal{A} and a polynomial function $\operatorname{poly}(\cdot, \cdot, \cdot, \cdot)$ such that for any $\varepsilon>0$ and $\delta>0$, for all distributions D on input space X and for any target concept $c \in C$, the following holds for any sample size $m \geqslant \operatorname{poly}\left(\frac{1}{\varepsilon}, \frac{1}{\delta}, n, \operatorname{size}(c)\right)$:

$$
P\left\{R\left(h_{S}\right) \leqslant \varepsilon\right\} \geqslant 1-\delta .
$$

If \mathcal{A} further runs in $\operatorname{poly}\left(\frac{1}{\varepsilon}, \frac{1}{\delta}, n\right.$, size $\left.(c)\right)$, then C is said to be efficiently PAC-learnable. When such an algorithm \mathcal{A} exists, it is called a PAC-learning algorithm for C.

Remark 1. A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm after observing a number of points polynomial in $\frac{1}{\varepsilon}$ and $\frac{1}{\delta}$ is approximately correct (error at most ε) with high probability (at least $1-\delta$), which justifies the PAC terminology. The $\delta>0$ is used to define the confidence $1-\delta$ and $\varepsilon>0$ the accuracy $1-\varepsilon$. Note that if the running time of the algorithm is polynomial in $\frac{1}{\varepsilon}$ and $\frac{1}{\delta}$, then the sample size m must also be polynomial if the full sample is received by the algorithm.
Remark 2. The following statements are true for the PAC framework.

1. It is a distribution-free model.
2. The training sample and the test examples are drawn from the same distribution D.
3. It deals with the question of learnability for a concept class C and not a particular concept.

2 Guarantees for finite hypothesis sets - consistent case

Theorem 2.1 (Learning bounds - finite H, consistent case). Let $H \subset y^{x}$ be a finite set of functions. Let \mathcal{A} be an algorithm that for any target concept $c \in H$ and i.i.d. sample S returns a consistent hypothesis h_{S} such that $\hat{R}\left(h_{S}\right)=0$. Then, for any $\varepsilon, \delta>0$, the inequality $P\left\{R\left(h_{S}\right) \leqslant \varepsilon\right\} \geqslant 1-\delta$ holds if

$$
m \geqslant \frac{1}{\varepsilon}\left(\ln |H|+\ln \frac{1}{\delta}\right) .
$$

This sample complexity result admits the following equivalent statement as a generalization bound: for any $\varepsilon, \delta>$ 0 , with probability at least $1-\delta$

$$
R\left(h_{S}\right) \geqslant \frac{1}{m}\left(\ln |H|+\ln \frac{1}{\delta}\right) .
$$

Proof. Fix $\varepsilon>0$. We provide a uniform convergence bound for all consistent hypotheses $h_{S} \in H$, since we don't know which of these is selected by the algorithm \mathcal{A}. We can upper bound the probability of a hypothesis being consistent with generalization risk higher than ε, by the union bound , to get

$$
P\left(\cup_{h \in H}\{\hat{R}(h)=0\}\right) \leqslant \sum_{h \in H} P\{\hat{R}(h)=0\} .
$$

Consider any $h \in H$ such that $R(h)=\mathbb{E}_{\{h(X) \neq Y\}}>\varepsilon$, then the probability for any sample $S=\left(X_{1}, \ldots, X_{m}\right)$ drawn i.i.d. from the same distribution D with zero empirical risk is

$$
P\{\hat{R}(h)=0\}=P\left(\cap_{i=1}^{m}\left\{h\left(X_{i}\right)=Y_{i}\right\}=\prod_{i=1}^{m} P\left\{h\left(X_{i}\right)=Y_{i}\right\} \leqslant R(h)^{m}<(1-\varepsilon)^{m} .\right.
$$

The result follows from substituting this bound in the union bound.

3 Guarantees for finite hypothesis sets - inconsistent case

In many practical cases, the hypothesis set H may not consist of the target concept $c \in C$.
Corollary 3.1 (Hoeffding). Fix $\varepsilon>0$ and let $S=\left(X_{i}: i \in[m]\right)$ be an i.i.d. sample of size m. Then, for any hypothesis $h: X \rightarrow\{0,1\}$

$$
P\{\hat{R}(h)-R(h) \geqslant \varepsilon\} \leqslant \exp \left(-2 m \varepsilon^{2}\right), \quad P\{\hat{R}(h)-R(h) \leqslant-\varepsilon\} \leqslant \exp \left(-2 m \varepsilon^{2}\right)
$$

By the union bound, we have $P\{|\hat{R}(h)-R(h)| \geqslant \varepsilon\} \leqslant 2 \exp \left(-2 m \varepsilon^{2}\right)$.
Proof. Recall that $\hat{R}(h)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\left\{Y_{i} \neq h\left(X_{i}\right)\right\}}$ and $R(h)=\mathbb{E} \hat{R}(h)$. We get the results by taking the random variables $\mathbb{1}_{\left\{Y_{i} \neq h\left(X_{i}\right)\right\}} \in\{0,1\}$, and applying Theorem A. 2 with $\sigma^{2}=m$.

Corollary 3.2 (Generalization bound - single hypothesis). For a hypothesis $h: \mathcal{X} \rightarrow\{0,1\}$ and any $\boldsymbol{\delta}>0$, the following inequality holds with probability at least $1-\delta$

$$
R(h) \leqslant \hat{R}(h)+\sqrt{\frac{\ln \frac{2}{\delta}}{2 m}} .
$$

Theorem 3.3 (Learning bound - finite H, inconsistent case). Let H be a finite hypothesis set. Then, for any $\delta>0$, with probability at least $1-\delta$,

$$
R(h) \leqslant \hat{R}(h)+\sqrt{\frac{\ln |H|+\ln \frac{2}{\delta}}{2 m}}, \text { for all } h \in H .
$$

Proof. Let $h_{1}, \ldots, h_{|H|}$ be the elements of H. Using the union bound and applying the generalization bound, we get

$$
P\left(\cup_{h \in H}\{\hat{R}(h)-R(h)>\varepsilon\}\right) \leqslant \sum_{h \in H} P\{\hat{R}(h)-R(h)>\varepsilon\} \leqslant 2|H| \exp \left(-2 m \varepsilon^{2}\right) .
$$

Setting the right-hand side to be equal to δ completes the proof.
Remark 3. We observe the following from the upper bound on the generalized risk.

1. For finite hypothesis set H,

$$
R(h) \leqslant \hat{R}(h)+O\left(\sqrt{\frac{\log _{2}|H|}{m}}\right)
$$

2. The number of bits needed to represent H is $\log _{2}|H|$.
3. A larger sample size m guarantees better generalization.
4. The bound increases logarithmically with $|H|$.
5. The bound is worse for inconsistent case $\sqrt{\frac{\log _{2}|H|}{m}}$ compared to $\frac{\log _{2}|H|}{m}$ for the consistent case.
6. For a fixed $|H|$, to attain the same guarantee as in the consistent case, a quadratically larger labeled sample is needed.
7. The bound suggests seeking a trade-off between reducing the empirical error versus controlling the size of the hypothesis set: a larger hypothesis set is penalized by the second term but could help reduce the empirical error, that is the first term. But, for a similar empirical error, it suggests using a smaller hypothesis set.

4 Generalities

4.1 Deterministic versus stochastic scenarios

Consider the stochastic scenario where the distribution D is defined over $X \times y$. The training data is a labeled sample $T=\left(\left(X_{i}, Y_{i}\right): i \in[m]\right)$ drawn i.i.d. from the distribution D. The learning problem is to find a hypothesis $h \in H$ with small generalization error

$$
R(h)=P\{h(X) \neq Y\}=\mathbb{E}\left[\mathbb{1}_{\{h(X) \neq Y\}}\right] .
$$

Definition 4.1 (Agnostic PAC-learning). Let H be a hypothesis set. An algorithm \mathcal{A} is an agnostic PAC-learning algorithm if there exists a polynomial function $\operatorname{poly}(\cdot, \cdot, \cdot, \cdot)$ such that for any $\varepsilon>0$ and $\delta>0$, for all distributions D over $X \times \mathcal{Y}$, the following holds for any sample size $m \geqslant \operatorname{poly}\left(\frac{1}{\varepsilon}, \frac{1}{\delta}, n, \operatorname{size}(c)\right)$

$$
P\left\{R\left(h_{S}\right)-\min _{h \in H} R(h) \leqslant \varepsilon\right\} \geqslant 1-\delta .
$$

Further, if the algorithm \mathcal{A} runs in $\operatorname{poly}\left(\frac{1}{\varepsilon}, \frac{1}{\delta}, n, \operatorname{size}(c)\right)$, then it is said to be an efficient agnostic PAC-learning algorithm.

4.2 Bayes error and noise

In the deterministic case, by definition, there exists a target function $c: X \rightarrow y$ with no generalization error $R(h)=0$. In the stochastic case, there is a minimal non-zero error for any hypothesis.
Definition 4.2 (Bayes error). Given a distribution D over $X \times y$, the Bayes error R^{*} is defined as the infimum of the errors achieved by measurable functions $h: X \rightarrow Y$

$$
R^{*} \triangleq \inf _{h \text { measurable }} R(h)
$$

A hypothesis h with $R(h)=R^{*}$ is called a Bayes hypothesis or Bayes classifier.
In the deterministic case, we have $R^{*}=0$, however $R^{*} \neq 0$ in the stochastic case. Recall that

$$
R(h)=\mathbb{E}_{\{h(X) \neq Y\}}=\int_{x \in X} d P(x) \sum_{y \in \mathcal{y}} P(y \mid x) \mathbb{1}_{\{h(x) \neq y\}} .
$$

The Bayes classifier h_{B} can be defined in terms of the conditional probabilities as

$$
h_{B}(x)=\arg \max _{y \in \mathcal{Y}} P(y \mid x), \text { for all } x \in X .
$$

The average error made by h_{B} on $x \in \mathcal{X}$ is thus $\min \left\{\sum_{z \in Y: z \neq y} P(z \mid x)\right\}$, and this is the minimum possible error.
Definition 4.3 (Noise). For binary classification $y=\{0,1\}$, given a distribution D over $X \times y$, the noise at point $x \in \mathcal{X}$ is defined by

$$
n(x)=\min \{P(1 \mid x), P(0 \mid x)\} .
$$

The average noise or the noise associated to D is $\mathbb{E}[n(X)]$.
Remark 4. The average noise is the Bayes error, i.e. $\mathbb{E}[n(X)]=R^{*}$. The noise determines the difficulty of the learning task.

4.3 Estimation and approximation errors

For a hypothesis set H, we let h^{*} be the best-in-class hypothesis in the H with minimal error. Then, the difference between the generalization risk and Bayes error can be written as

$$
R(h)-R^{*}=R(h)-R\left(h^{*}\right)+R\left(h^{*}\right)-R^{*} .
$$

Definition 4.4. The second term $R\left(h^{*}\right)-R^{*}$ is called the approximation error, and is a measure of how well the Bayes error can be approximated by the class H.

Approximation error is a measure of the richness of the hypothesis set H, and not available in general.
Definition 4.5. The first term $R(h)-R\left(h^{*}\right)$ is called the estimation error, and measures the performance of hypothesis h with respect to best-in-class hypothesis.

The definition of agnostic PAC-learning is also based on the estimation error. The estimation error of the hypothesis h_{S} returned by the algorithm \mathcal{A} after training on a sample S, can sometimes be bounded in terms of the generalization error.
Example 4.6 (Empirical risk minimization (ERM)). Let h_{T}^{E} denote the hypothesis $h \in H$ that minimizes the empirical risk for the labeled sample T. In particular, $\hat{R}_{h_{T}^{E}} \leqslant R\left(h^{*}\right)$ and we can write

$$
R\left(h_{T}^{E}\right)-R\left(h^{*}\right)=R\left(h_{T}^{E}\right)-\hat{R}\left(h_{T}^{E}\right)+\hat{R}\left(h_{T}^{E}\right)-R\left(h^{*}\right) \leqslant R\left(h_{T}^{E}\right)-\hat{R}\left(h_{T}^{E}\right)+\hat{R}\left(h^{*}\right)-R\left(h^{*}\right) \leqslant 2 \sup _{h \in H}|R(h)-\hat{R}(h)| .
$$

The upper bound can be bounded by the learning bounds and increases with the size of the hypothesis set $|H|$, while the Bayes error $R\left(h^{*}\right)$ decreases with $|H|$.

4.4 Model selection

Example 4.7 (Structural risk minimization (SRM)). Consider an infinite sequence of hypothesis sets with increasing sizes $H_{n} \subset H_{n+1}$ for all $n \geqslant 0$. For each H_{n}, we can find the ERM solution h_{n}^{E} and complexity term $c\left(H_{n}, m\right)$. Then,

$$
h_{T}^{S}=\arg \min _{h \in H_{n}, n \in \mathbb{N}}\left(\hat{R}_{T}(h)+c\left(H_{n}, m\right)\right)
$$

If $\hat{R}_{T}(h)=0$ for some $h \in H_{n}$, then $\hat{R}_{T}(h)=0$ for all $H_{m}, m \geqslant n$.
Example 4.8 (Regularized risk minimization). An alternative family of algorithms is based on a more straightforward optimization that consists of minimizing the sum of the empirical error and a regularization term that penalizes more complex hypotheses. The regularization term is typically defined as $\|h\|^{2}$ for some norm $\|\cdot\|$ when H is a vector space, and

$$
h_{T}^{R}=\arg \min _{h \in H} \hat{R}_{T}(h)+\lambda\|h\|^{2},
$$

where $\lambda \geqslant 0$ is a regularization parameter, which can be used to determine the trade-off between empirical error minimization and control of the complexity. In practice, λ is typically selected using n-fold cross-validation.

A Hoeffding's lemma

Lemma A. 1 (Hoeffding). Let X be a zero-mean random variable with $X \in[a, b]$ for $b>a$. Then, for any $t>0$, we have

$$
\mathbb{E}\left[e^{t X}\right] \leqslant e^{\frac{t^{2}(b-a)^{2}}{8}}
$$

Proof. From the convexity of the function $f(x)=e^{t x}$, we have for any $x=\lambda a+(1-\lambda) b \in[a, b]$ for $\lambda=\frac{b-x}{b-a} \in$ $[0,1]$

$$
e^{x}=f(x) \leqslant \lambda f(a)+(1-\lambda) f(b)=\frac{b-x}{b-a} e^{t a}+\frac{x-a}{b-a} e^{t b} .
$$

Since $\mathbb{E}[X]=0$, taking expectation on both sides, we get from the linearity of the expectations

$$
\mathbb{E}\left[e^{t X}\right] \leqslant \frac{b}{b-a} e^{t a}+\frac{-a}{b-a} e^{t b}=e^{\phi(t)}
$$

where the function $\phi(t)$ is given by

$$
\phi(t)=t a+\ln \left(\frac{b}{b-a}+\frac{-a}{b-a} e^{t(b-a)}\right) .
$$

We can write the first two derivatives of this function $\phi(t)$ as

$$
\begin{aligned}
& \phi^{\prime}(t)=a-\frac{a e^{t(b-a)}}{\frac{b}{b-a}-\frac{a}{b-a} e^{t(b-a)}}=a-\frac{a}{\frac{b}{b-a} e^{-t(b-a)}-\frac{a}{b-a}} \\
& \phi^{\prime \prime}(t)=\frac{-a b e^{-t(b-a)}}{\left(\frac{b}{b-a} e^{-t(b-a)}-\frac{a}{b-a}\right)^{2}}=(b-a)^{2}\left(\frac{\alpha}{(1-\alpha) e^{-t(b-a)}+\alpha}\right)\left(\frac{(1-\alpha) e^{-t(b-a)}}{\left.(1-\alpha) e^{-t(b-a)}+\alpha\right)}\right) \leqslant \frac{(b-a)^{2}}{4},
\end{aligned}
$$

where we have denoted $\alpha=\frac{-a}{b-a} \geqslant 0$ since $\mathbb{E}[X]=0$. The result follows from the second order expansion of $\phi(t)$, such that we get for some $\theta \in[0, t]$

$$
\phi(t)=\phi(0)+t \phi^{\prime}(0)+\frac{t^{2}}{2} \phi^{\prime \prime}(\theta) \leqslant t^{2} \frac{(b-a)^{2}}{8} .
$$

Theorem A. 2 (Hoeffding). Let $\left(X_{i} \in\left[a_{i}, b_{i}\right]: i \in[m]\right)$ be a vector of m independent random variables, and define $\sigma^{2}=\sum_{i=1}^{m}\left(b_{i}-a_{i}\right)^{2}$. Then, for any $\varepsilon>0$ and $S_{m} \triangleq \sum_{i=1}^{m} X_{i}$, we have

$$
P\left\{S_{m}-\mathbb{E} S_{m} \geqslant \varepsilon\right\} \leqslant \exp \left(-\frac{2 \varepsilon^{2}}{\sigma^{2}}\right), \quad P\left\{S_{m}-\mathbb{E} S_{m} \leqslant-\varepsilon\right\} \leqslant \exp \left(-\frac{2 \varepsilon^{2}}{\sigma^{2}}\right)
$$

Proof. From the definition of indicator sets and for any increasing function $\phi: \mathbb{R} \rightarrow \mathbb{R}$, we can write for any random variable X

$$
\phi(X) \geqslant \phi(X) \mathbb{1}_{\{X \geqslant \varepsilon\}}=\phi(X) \mathbb{1}_{\{\phi(X) \geqslant \phi(\varepsilon)\}} \geqslant \phi(\varepsilon) \mathbb{1}_{\{X \geqslant \varepsilon\}} .
$$

Taking the random variable $S_{m}-\mathbb{E}\left[S_{m}\right]$ and $\phi(x)=e^{t x}$, and taking expectation on both sides, we get the Chernoff bound

$$
\begin{aligned}
P\left\{S_{m}-\mathbb{E} S_{m} \geqslant \varepsilon\right\} & \leqslant e^{-t \varepsilon} \mathbb{E}\left[\exp \left(t\left(S_{m}-\mathbb{E} S_{m}\right)\right)\right]=e^{-t \varepsilon} \prod_{i=1}^{m} \mathbb{E}\left[\exp \left(t\left(X_{i}-\mathbb{E} X_{i}\right)\right)\right] \\
& \leqslant e^{-t \varepsilon} \prod_{i=1}^{m} \exp \left(t^{2}\left(b_{i}-a_{i}\right)^{2} / 8\right)=\exp \left(-t \varepsilon+\frac{t^{2} \sigma^{2}}{8}\right) \leqslant \exp \left(-\frac{2 \varepsilon^{2}}{\sigma^{2}}\right) .
\end{aligned}
$$

The first equality follows from the i.i.d. nature of $\left(X_{i}: i \in[m]\right)$, the following inequality follows from Lemma A.1. the equality follows from the definition of σ^{2}, and the last inequality from $t^{*}=\frac{4 \varepsilon}{\sigma^{2}}$.

