
Lecture-12: Multiclass Classification & Generative Models

1 Multiclass Classification

1.1 Decision Tree (contd.)
• Criterion for splitting at each node of the decision tree:

Selecting which feature (attribute) of input space to use and what should be the threshold value.
Let’s say each data instance x = [x1, ......,xd ]

T , x ∈ Rd . We need to select a feature xi and the
threshold value ti for xi < ti. Usually those features and threshold values are used, which reduce
the classification error. However, it is not differentiable. Therefore, entropy which upper bounds
the classification error and is strictly convex and differentiable is preferred. Entropy measures the
randomness in the system. Entropy E of the system is computed as follows:

E =−
K

∑
i=1

pi log pi (1)

where, pi is the fraction of samples with class-label i. The goal is to select that particular feature
(and threshold) which reduces the sum of entropy in children nodes.
Another measure to use in determining splitting criteria is the Gini index G, defined as:

G =
K

∑
i=1

pi(1− pi) (2)

This also upper bounds the classification error and is strictly convex and differentiable.

• Following are some of the drawbacks of Decision Tree:
Decision Trees are unstable.

– There is no margin defined, as compared to Support Vector Machines. The margin provides
some tolerance to noise.

– Decision Trees are more prone to overfitting.

• Random Forests have been found to be doing much better than Decision Trees and are less prone
to overfitting. Small perturbation in the threshold values or feature selection for splitting is taken
care by random selection of features. Thus, these are also stable.

1.2 K-Nearest Neighbours (K-NN)
The K-nearest neighbor (K-NN) algorithm is one of the simplest machine learning algorithms for classi-
fication. It works on the idea of closeness of data points as defined in the metric space. Very often we
take the Euclidean metric space.
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Figure 1: Example of K-NN classification. The test sample (green dot) should be classified either to blue
squares or to red triangles. If K = 3 (solid line circle) it is assigned to the red triangles because there are
2 triangles and only 1 square inside the inner circle. If K = 5 (dashed line circle) it is assigned to the blue
squares (3 squares vs. 2 triangles inside the outer circle). Figure taken from Wikipedia.

• Let’s say S = {(x1,y1), ......,(xm,ym)} is the sample of m i.i.d. (independent and identically dis-
tributed) data instances which are drawn from distribution D.

• xi ∈ X , X ⊆ Rd , yi ∈ {1,2, ....,L}

• (X ,d) is a metric space and d(xi,x j) is its distance measure. For example:

d(xi,x j) = ||xi− x j||2 (3)

We predict the class-label of a new data instance, xnew by taking a majority vote among the classes of K-
points in the training sample S which are closest to this new instance xnew. The closeness is the inverse of
distance d in metric space (X ,d). Figure 1 explains how the classification is done using K-NN algorithm.

Performance Analysis:

• As sample size goes to infinity, the expected error of 1-NN converges to twice the Bayes risk. For
K-NN, it converges to (1+

√
8/K) times the error of the Bayes classifier.

• K-NN suffers from curse of dimensionality. The sample size might increase exponentially with the
dimensions. Refer [Shai], Pages 219-227.

2 Generative Models
• In generative models, we compute (infer) the class-conditional densities p(x|Hk) for each class Hk,

as well as the class priors p(Hk), and then use them to compute posterior class probabilities p(Hk|x)
through Bayes theorem.

p(Hk|x) =
p(x|Hk)p(Hk)

p(x)
(4)
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Figure 2: Figure illustrates the schematic description of random decision boundary x = x̂ and optimal
decision boundary x = xo over the two overlapping joint probability densities, p(x,H1) and p(x,H2).
Figure taken from C. Bishop’s Pattern Recogition & Machine Learning.

where, p(x) = ∑
k

p(x|Hk)p(Hk).

Using the posterior (class) probabilities, we can determine class membership for each new input x.
Such classifiers are called Bayesian Classifiers. This approach explicitly or implicitly models the
distribution of inputs as well as outputs.

• In discriminative models, we directly compute the posterior (class) probabilities from the sample
training data and use it for classification of new data instance x. Logistic Regression is one such
algorithm which explicitly computes the posterior (class) probabilities only.

• Let’s consider Bayesian Classifier, which is a generative model:

– A sample S of m data instances drawn iid from distribution D, (x1,y1), ......,(xm,ym)∼iid D

– xi ∈ Rd , yi ∈ {1,2, ....,K}.
– π j = p(H j) is the prior probability of class j.

– ci j is the cost of choosing class-label i while the sample comes from class j.

– Ri is the region in which if x falls, a classifier will declare it from class i.

– p(x ∈ Ri|H j) is the probability that sample x is in region Ri given that x is from class j.

Total cost for this classifier

=
K

∑
i=1

K

∑
j=1

ci jπ j p(x ∈ Ri|H j)

=
K

∑
i=1

K

∑
j=1

ci jπ j

∫
Ri

p(x|H j)dx
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=
K

∑
i=1

∫
Ri

K

∑
j=1

ci jπ j p(x|H j)dx

=
K

∑
i=1

∫
Ri

K

∑
j=1

ci j p(x,H j)dx

=
K

∑
i=1

∫
Ri

K

∑
j=1

ci j p(H j|x)p(x)dx

=
K

∑
i=1

∫
Ri

ci(x)p(x)dx

where, ci(x) =
K

∑
j=1

ci j p(H j|x)

The goal is to minimize the above cost. The optimal classifier is called Bayes Classifier. For this
classifier,

Ri = {x : i = argmin
i

ci(x)} (5)

– Uniform cost: If we select ci j = 0, when i = j and 1 when i 6= j. Then,

ci(x) =
K

∑
j 6=i

p(H j|x) = 1− p(Hi|x)

Figure 2 shows the error regions in colors marked with blue, green and red. For the decision
boundary x = x̂, in region R1, the errors are due to points from class H2 being misclassified
as H1 which is represented by the sum of red and green regions, and in region R2, the errors
are due to points from class H1 being misclassified as H2 (represented by the blue region).
Decision boundary x = x0 represents the optimal one. It must be noted that error represented
by red region vanishes when we select the optimal decision boundary and this is indeed the
goal.
Therefore, the class-label for data instance x is:

ŷMAP = argmin
i

ci(x) = argmin
i
(1− p(Hi|x))

= argmax
i

p(Hi|x)
(6)

where, p(Hi|x) is the posterior probability of class i.
This is also called MAP (Maximum Aposteriori Probability) classifier.

– If all πi are same and equal to 1/K then in the MAP classifier, the class-label for data instance
x is:

ŷML = argmax
i

p(Hi|x) = argmax
i

p(x|Hi)1/K
p(x)

= argmax
i

p(x|Hi)
(7)

This classifier is called Maximum Likelihood Classifier.

• Naive Bayes’ Classifier:
MAP classifier classifies the data instance x as argmaxi p(Hi|x) which is equal to argmaxi p(x|Hi)πi.
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Very often, we don’t know about the class-conditional densities p(x|Hi) and the prior distribution
of classes πi. We only have sample of data from which we need to estimate the prior distribution
of each class and the class-conditional probability distributions. Hence, they are called plug-in
classifiers. Let’s consider the following scenario:

– Sample S = {(x1,y1), ........,(xm,ym)}. Each (xi,yi)∼iid D, i ∈ [m].

– Let’s consider for simplicity xi ∈ {0,1}d ,yi ∈ {1,2, .....,K}, i ∈ {1,2, .....,m}.

We need to estimate the class-conditional probability distributions:

p(xi|H j) = p(xi,1,xi,2, .......,xi,d |H j). (8)

This requires 2d number of probabilities to estimate, which is infeasible. Therefore, we use a
simplifying assumption of conditional independence on the componenents of each xi given the
class information:

p(xi,1,xi,2, .......,xi,d |H j) =
d

∏
l=1

p(xi,l |H j). (9)

This needs only d number of probabilities to be estimated. Each p(xi,l |H j) is estimated from the
sample.

p̂(xi,l = 1|H j) =
1

m j
∑

i
1(xi,l=1) (10)

where, m j is the number of samples belonging to class H j

We can estimate class prior probabilities as:

π̂ j =
m j

m
(11)

Naive Bayes classifier classifies the new data instance xnew as ŷnb:

ŷnb = argmax
j

p(H j|xnew) = argmax
j

d

∏
l=1

p̂(xnew,l |H j)π̂ j (12)

• Performance Analysis: Discriminative vs Generative models

– Discriminative model classifiers are asymptotically better for large sample size.

– Convergence rate of parameter estimation for Generative models is O(logd) while Discrimi-
native models need O(d). [d is the number of features of input space].
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