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1 Recap
In the previous lecture, we discussed algorithms for parametric estimation and genera-
tive modelling. In generative modelling, we have (x1, ...,xn) independent and identically
distributed (i.i.d.) samples drawn from pθ (x),θ ⊆Rd . The estimation of θ can be done
using two methods: Maximum Likelihood Estimation (MLE) and Bayesian/ Maximum
Aposteriori probability (MAP) method. In MLE, we have seen that the estimator is:

θ̂ = argmax
θ

L (θ), argmax
θ

pθ (x1, ...,xn) = argmax
θ

n

∏
i=1

pθ (xi) (1)

Here, L (θ) is called the likelihood function and the last equality follows from the fact
that the samples (x1, ...,xn) are i.i.d. We can also maximize the log-likelihood instead:
logL (θ) = ∑

n
i=1 log [pθ (xi)].

If we take, pθ (x) = 1√
2π

exp
(
−(x−µ)2

2

)
where θ = µ . Then we get:

logL (θ) =
n

∑
i=1

[
log
(

1√
2π

)
− (xi−µ)2

2

]
(2)

Take derivative w.r.t θ and equate to zero to obtain: µ̂ = 1
n ∑

n
i=1 xi

2 Mixture of Gaussians
A sample likelihood function for a mixture of two Gaussians is given as:

L (θ) = p1
1√
2π

exp
(
−(x−µ1)

2

2

)
+(1− p1)

1√
2π

exp
(
−(x−µ2)

2

2

)
(3)
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Here, θ = (p1,µ1,µ2) and K, the number of component distributions in the mixture
is 2. A ’brute-force’ way to solve the above equation would be to take partial derivatives
with each of p1, µ1 and µ2 and equate to zero to obtain the required solution that opti-
mizes the likelihood. This is a complicated non-linear equation and further, a generic
Gaussian mixture model (GMM) might have a large number of parameters and not just
three as shown in the above example (K = 2).

Thus, solving the MLE equation in general is very hard. Also, in general it is non-
concave. Thus, even if we solve, we don’t know if it is a maximum or a minimum; or a
global or a local optimum or a saddle point. It is important to find an efficient algorithm
to solve such an equation. We shall discuss one such algorithm in the next section.

3 Expectation Maximization (EM) algorithm

3.1 Background and Motivation
EM algorithm is an efficient way to solve problems with complex likelihood function
as seen in Gaussians mixture models. Further note that the EM algorithm is generic and
that the component distributions need not be Gaussian. Consider:

pθ (x) = ∑
y

pθ (x,y) (4)

Taking log, we get:

log pθ (x) = log

(
∑
y

pθ (x,y)

)
(5)

Note that Y in the previous example is a random variable s.t. P(Y = 1) = p1 and
P(Y = 0) = (1− p1).
Consider n i.i.d samples x1, ...,xn. We have:

L (θ) =
n

∑
i=1

log pθ (xi) =
n

∑
i=1

log

(
∑
y

pθ (xi,y)

)
(6)

Due to the presence of summation over y inside the log term, taking partial deriva-
tives and equating to zero, gives a very complicated non-linear system of non-convex
functions. Thus, in the following we modify the function such that the new function is
easier to optimize. Define:

F(Q,θ) =
n

∑
i=1

∑
y

Qiy log(pθ (X = xi,Y = y)) (7)
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where, Qiy = pθ (Y = y|X = xi). Observe that y’s are not the labels of data samples
whereas xi’s are data samples from the actual distribution.

If we had the sample set: (x1,y1), ...(xn,yn), we can get the log-likelihood as:

log pθ (X = xi,Y = yi) = log(pθ (Y = yi)pθ (X = xi|Y = yi)) (8)

Summing over i on both sides, we get:

∑
i

log pθ (X = xi,Y = yi) = ∑
i

log(pθ (Y = yi)pθ (X = xi|Y = yi)) (9)

which is an easier equation to solve than the equation (6) where there is a summation
over y inside log(.). But, we only have xi’s and the yi’s are missing.

To summarize the motivational points for considering EM algorithm:
1. Solve for likelihood equation for more complicated distribution
2. Solve for likelihood when some data is missing (e.g. yi is missing)

3.2 EM Algorithm
EM algorithm is an iterative algorithm. We compute, (Q(1),θ (1)),(Q(2),θ (2)), ....
It has two steps:
1. Expectation step: Get better Q using Q(t+1)

iy = p
θ (t)(Y = y|X = xi)

2. Maximization step: Maximize the likelihood given by θ (t+1)= argmax
θ

F(Q(t+1),θ)

Due to form of equation (7), maximization step is easy and expectation step is an
approximation to MLE.

Lemma 3.1. Define,

G(Q,θ) = F(Q,θ)−
n

∑
i=1

∑
y

Qiy log Qiy (10)

Then, EM algorithm can be re-written as,

Q(t+1) = argmax
Q

G(Q,θ (t)) (11)

θ
(t+1) = argmax

θ

G(Q(t+1),θ) (12)

Also,
G(Q(t+1),θ (t)) = L (θ (t)) (13)

where, L (θ) is as defined in equation (6)
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Proof. Start from equation (10). Fix Q and optimize over θ . The second term of equa-
tion (10) is only dependent on Q and independent of θ . So, we can operate only on the
first term and doing so, we get:

argmax
θ

G(Q(t+1),θ) = argmax
θ

F(Q(t+1),θ) = θ
(t+1) (14)

Thus, equation (12) is same as the maximization step.

Observe that Q is a matrix whose elements are Qiy. Fix i and observe that rows are
probabability mass over y (i.e., PMF of y). So the constraint to be applied is: ∑y Qiy = 1
for each i (each row of Q sums to 1). Consider,

G(Q,θ) = F(Q,θ)−∑
i

∑
y

Qiy logQiy (15)

From equation (7),

G(Q,θ) =
n

∑
i=1

∑
y

Qiy log(pθ (X = xi,Y = y))−∑
i

∑
y

Qiy log Qiy (16)

Simplifying, we get:

G(Q,θ) = ∑
i

∑
y

Qiy log
(

pθ (X = xi,Y = y)
Qiy

)

≤∑
i

log

(
∑
y

Qiy
pθ (X = xi,Y = y)

Qiy

)
= ∑

i
log(pθ (X = xi))

The penultimate step is obtained from the fact that log is a concave function and using
Jensen’s inequality after noting that convex function is negative of concave function, the
inequality reverses and we get E[φ(X)]≤ φ(E[X ]) with φ(.) = log(.).
The R.H.S. is the log-likelihood function L (θ). This means that for any Qiy:

G(Q,θ)≤L (θ) (17)

Now substitute, Qiy = pθ (Y = y|X = xi) in equation (16). We get,

G(Q,θ) =
n

∑
i=1

∑
y

pθ (Y = y|X = xi) log(pθ (Y = y,X = xi))

−
n

∑
i=1

∑
y

pθ (Y = y|X = xi) log(pθ (Y = y|X = xi))

(18)
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G(Q,θ) = ∑
i

∑
y

pθ (Y = y|X = xi) log
(

pθ (Y = y,X = xi)

pθ (Y = y|X = xi)

)
= ∑

i
∑
y

pθ (Y = y|X = xi) log(pθ (X = xi))

= ∑
i

log pθ (X = xi)∑
y

pθ (Y = y|X = xi)

= ∑
i

log pθ (X = xi)

= L (θ)

Bayes theorem is applied to get the second step in the above set of equations and the
fact that probabilities sum to 1 over its domain to get step 4 from step 3.
Thus, we get: G(Q,θ) = L (θ) when Qiy = pθ (Y = y|X = xi). Combining the above
results, we can convey the following:

argmax
Q

G(Q,θ (t)) = Q(t+1) = P
θ (t)(Y = y|X = xi) (19)

which is same as the Expectation step. This proves equation (11).

Theorem 3.2.
L (θ (t+1))≥L (θ (t)), ∀ t = 1,2, ... (20)

Proof. We know that, argmax
Q

G(Q,θ (t+1)) = Q(t+2).

Since, G(Q,θ) = L (θ),

L (θ (t+1)) = G(Q(t+2),θ (t+1))

≥ G(Q(t+1),θ (t+1))

≥ G(Q(t+1),θ (t))

= L (θ (t))

where, the second step follows because Q(t+2) is optimal and further by using Lemma
3.1 in subsequent steps to arrive at the required result.

Consider the following: F(Q(t+1),θ (t+1)) = max
Q

F(Q(t+1),θ), h(θ (t),θ (t+1)) be-

cause Q(t+1) depends on θ (t).

Theorem 3.3. If h is continuous in (θ (t),θ (t+1)), then all the limit points of θ (t) are
stationary points of L (θ) and L (θ (t)) converges monotonically to L (θ̂) where θ̂ is
the stationary point of L (θ).
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4 Non-Parametric Regression
Consider n i.i.d samples (x1,y1), ...,(xn,yn) drawn from an unknown distribution D such
that the relationship between xi and yi can be expressed as:

yi = mo(xi)+ εi (21)

where, mo : X 7→ R is the unknown function with input xi ∈X and yi ∈ R. Further, εi
is the i.i.d noise with unknown distribution and zero mean i.e., E[εi] = 0. Also, εi and xi
are independent. We want to estimate function mo from these samples.

Unlike the classification and parametric estimation problems seen so far, this is an
infinite dimensional estimation problem.

Definition 4.1 (Mean Square Error (MSE)). For input X , output Y and estimate of
mo(.) denoted by m̂(.), the mean square error is defined as E

[
(m̂(X)−Y )2

]
.

Remark 4.2. The optimum estimator in MSE sense is m∗(x) = E[Y | X = x].

Note 4.3. This estimate however can not be directly computed as the distribution P(Y | X)
is unknown.

MSE can be written:

E
[
(Y − m̂(X))2

]
= E

[
[(Y −mo(X))+(mo(X)−E[m̂(X)])+(E[m̂(X)]− m̂(X))]2

]
(22)

Expanding the squares yields,

E
[
(Y − m̂(X))2

]
= E

[
(Y −mo(X))2

]
+E

[
(mo(X)−E[m̂(X)])2]+

E
[
(E[m̂(X)]− m̂(X))2]+Cross− terms

(23)

The cross terms can be shown to be zero. The first term on the RHS is E[εi
2], the

minimum error achievable. The second term is the expectation over the square of the
bias, E[bias2] and the third term is the variance of estimated function, var(m̂(X)). Bias
of the algorithm is its affinity toward choosing a hypothesis from H or the approximation
error. The variance can be reduced by increasing the number of samples. The bias can
be reduced by choosing a richer hypothesis class. We can also notice that reducing the
bias might lead to increase in the variance because to reduce the bias we need to enlarge
the hypothesis class to estimate m̂o which means estimating more parameters. This is
termed as “Bias-Variance trade-off”.
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5 In the next class
We will see the following algorithms for non-parametric regression/ estimation
1. K-NN
2. Random Forest
3. Kernel Method (RKHS and others)

We will also obtain minimax bounds.

Remark 5.1. Another general paradigm for both classification and regression problems
are neural networks which we will study later.
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