Lecture-02: Probability Function

1 Probability Function

Consider N trials of a random experiment over outcome space Ω and the event space \mathcal{F}. Let $X_{n} \in \Omega$ denote the outcome of the experiment of the nth trial. We define the indicator function

$$
\mathbb{1}_{\left\{X_{n} \in A\right\}}= \begin{cases}1, & X_{n} \in A \\ 0, & X_{n} \notin A\end{cases}
$$

Let $N(A)$ denote the number of times an event A occurs in N trials, then $N(A)=\sum_{n=1}^{N} \mathbb{1}_{\left\{X_{n} \in A\right\}}$. We denote the relative frequency of an event A in N trials by $\frac{N(A)}{N}$. We observe the following properties of the relative frequency.

1. For all $A \in \mathcal{F}$, we have $0 \leqslant \frac{N(A)}{N} \leqslant 1$. This follows from the fact that $0 \leqslant N(A) \leqslant N$ for any $A \in \mathcal{F}$.
2. Suppose $A_{i} \in \mathcal{F}$ for all $i \in \mathbb{N}$ such that $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$, then $\frac{N\left(\cup_{i \in \mathbb{N}} A_{i}\right)}{N}=\sum_{i \in \mathbb{N}} \frac{N\left(A_{i}\right)}{N}$. This follows from the fact that for disjoint events $\left(A_{i}: i \in \mathbb{N}\right)$, we have

$$
\mathbb{1}_{\left\{X_{n} \in \cup_{i \in \mathbb{N}} A_{i}\right\}}=\sum_{i \in \mathbb{N}} \mathbb{1}_{\left\{X_{n} \in A_{i}\right\}} .
$$

3. For the certain event Ω, we have $\frac{N(\Omega)}{N}=1$. This follows from the fact that $N(\Omega)=N$.

Since the relative frequency is positive bounded, it may converge to a real number as N grows very large, and the limit $\lim _{N \rightarrow \infty} \frac{N(A)}{N}$ may exist. Inspired by the relative frequency, we list the following axioms for a probability function $P: \mathcal{F} \rightarrow[0,1]$.

Axiom 1.1 (Axioms of probability). We define a probability measure on sample space Ω and event space \mathcal{F} by a function $P: \mathcal{F} \rightarrow[0,1]$ which satisfies the following axioms.
Non-negativity For all events $A \in \mathcal{F}$, we have $P(A) \geqslant 0$.
σ-additivity For an infinite sequence of mutually disjoint events $A_{i} \in \mathcal{F}$ for all $i \in \mathbb{N}$ such that $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$, we have $P\left(\cup_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} P\left(A_{i}\right)$.

Certainity $P(\Omega)=1$.
Definition 1.2 (Limits of monotonic sets). For a sequence of non-decreasing sets $\left(A_{n}: n \in \mathbb{N}\right)$, we can define the limit as

$$
\lim _{n \rightarrow \infty} A_{n} \triangleq \cup_{n \in \mathbb{N}} A_{n}
$$

Similarly, for a sequence of non-increasing sets $\left(A_{n}: n \in \mathbb{N}\right)$, we can define the limit as

$$
\lim _{n \rightarrow \infty} A_{n} \triangleq \cap_{n \in \mathbb{N}} A_{n}
$$

Example 1.3 (Monotone sets). Consider $\left(-\frac{1}{n} \in \mathbb{R}: n \in \mathbb{N}\right)$ a monotonically increasing sequence that converges to the limit 0 . We consider sequence of sets $\left(A_{n}=\left[-2,-\frac{1}{n}\right]: n \in \mathbb{N}\right)$ and $\left(B_{n}=\left[-2, \frac{1}{n}\right]: n \in\right.$ \mathbb{N}), which are monotonically increasing and decreasing respectively. We can verify the following limits

$$
\lim _{n} A_{n}=\cup_{n \in \mathbb{N}} A_{n}=[-2,0), \quad \quad \lim _{n} B_{n}=\cap_{n \in \mathbb{N}} B_{n}=[-2,0]
$$

Definition 1.4 (Limits of sets). For a sequence of sets $\left(A_{n}: n \in \mathbb{N}\right)$, we can define the limit superior and limit inferior of this sequence of sets as

$$
\limsup _{n \rightarrow \infty} A_{n} \triangleq \cap_{n \in \mathbb{N}} \cup_{m \geqslant n} A_{m}=\lim _{n \rightarrow \infty} \cup_{m \geqslant n} A_{m}, \quad \liminf _{n \rightarrow \infty} A_{n} \triangleq \cup_{n \in \mathbb{N}} \cap_{m \geqslant n} A_{m}=\lim _{n \rightarrow \infty} \cap_{m \geqslant n} A_{m}
$$

In general, $\liminf _{n \rightarrow \infty} A_{n} \subseteq \limsup _{n \rightarrow \infty} A_{n}$. If the limit superior and limit inferior of any sequence of sets are equal, then the limit is defined as

$$
\lim _{n \rightarrow \infty} A_{n}=\limsup _{n \rightarrow \infty} A_{n}=\liminf _{n \rightarrow \infty} A_{n} .
$$

Example 1.5 (Sequence of sets with different limits). We consider sequence of sets $\left(A_{n}=\left[-2,(-1)^{n}+\right.\right.$ $\left.\frac{1}{n}\right]: n \in \mathbb{N}$). It follows that $F_{n}=[-2,-1]$ and

$$
E_{n}=\cup_{m \geqslant n}= \begin{cases}{\left[-2,1+\frac{1}{n+1}\right],} & n \text { odd } \\ {\left[-2,1+\frac{1}{n}\right],} & n \text { even } .\end{cases}
$$

We can verify the following limits

$$
\liminf _{n} A_{n}=\cup_{n \in \mathbb{N}} F_{n}=[-2,-1], \quad \quad \limsup _{n} A_{n}=\cap_{n \in \mathbb{N}} F_{n}=[-2,1]
$$

Lemma 1.6. For a sequence of sets $\left(A_{n}: n \in \mathbb{N}\right)$, we have $\liminf _{n \rightarrow \infty} A_{n} \subseteq \limsup _{n \rightarrow \infty} A_{n}$.
Proof. For each $n \in \mathbb{N}$, we define $E_{n} \triangleq \cup_{m \geqslant n} A_{m}$ and $F_{n} \triangleq \cap_{m \geqslant n} A_{m}$. We see that $F_{n_{0}} \subseteq A_{m}$ for all $m \geqslant n_{0}$. In particular, we can write $\cup_{n \in \mathbb{N}} F_{n} \subseteq \cup_{m \geqslant n} A_{m}$ for each $n \in \mathbb{N}$, and hence the result follows.

Theorem 1.7. For any probability space (Ω, \mathcal{F}, P), we have the following properties of probability measure.
impossibility: $P(\varnothing)=0$.
finite additivity: For disjoint events $\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{F}^{n}$ such that $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$, we have $P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$.
monotonicity: If events $A, B \in \mathcal{F}$ such that $A \subseteq B$, then $P(A) \leqslant P(B)$.
inclusion-exclusion: For any events $A, B \in \mathcal{F}$, we have $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
continuity: For an increasing sequence of events $\left(A_{i} \in \mathcal{F}: i \in \mathbb{N}\right)$ such that $\lim _{n} A_{n}$ exists, we have $P\left(\lim _{n \rightarrow \infty} A_{n}\right)=$ $\lim _{n \rightarrow \infty} P\left(A_{n}\right)$.

Proof. We consider the probability space (Ω, \mathcal{F}, P).

1. We take disjoint events $\left(E_{i}: i \in \mathbb{N}\right)$ where $E_{1}=\Omega$ and $E_{i}=\varnothing$ for $i \geqslant 2$. It follows that $\cup_{i \in \mathbb{N}} E_{i}=\Omega$ and $\left(E_{i}: i \in \mathbb{N}\right)$ is a collection of mutually disjoint events. From the countable additivity axiom of probability, it follows that

$$
P(\Omega)=P(\Omega)+\sum_{i \geqslant 2} P\left(E_{i}\right) .
$$

Since $P\left(E_{i}\right) \geqslant 0$, it implies that $P(\varnothing)=0$.
2. We see that finite additivity follows from the countable additivity. We consider disjoint events A_{1}, \ldots, A_{n}, and take $A_{i}=\varnothing$ for all $i>n$. It follows that the sequence of sets $\left(A_{i}: i \in \mathbb{N}\right)$ is mutually disjoint, and since $P(\varnothing)=0$, it follows that

$$
P\left(\sum_{i \in \mathbb{N}} A_{i}\right)=P\left(\sum_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)+\sum_{i>n} P(\varnothing)=\sum_{i=1}^{n} P\left(A_{i}\right) .
$$

3. For events $A, B \in \mathcal{F}$ such that $A \subseteq B$, we can take disjoint events $E_{1}=A$ and $E_{2}=B \backslash A$. From closure under complements and intersection, it follows that $E_{2} \in \mathcal{F}$. From non-negativity of probability, we have $P\left(E_{2}\right) \geqslant 0$. Finally, the result follows from finite additivity of disjoint events

$$
P(B)=P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right) \geqslant P(A)
$$

4. For any two events $A, B \in \mathcal{F}$, we can write the following events as disjoint unions

$$
A=(A \backslash B) \cup(A \cap B), \quad B=(B \backslash A) \cup(A \cap B), \quad A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)
$$

The result follows from the finite additivity of probability of disjoint events.
5. We show the continuity for non-decreasing and non-increasing sequence of sets.

Continuity for increasing sets. Let $\left(A_{n} \in \mathcal{F}: n \in \mathbb{N}\right)$ be a non-decreasing sequence of events, then $\lim _{n \rightarrow \infty} A_{n}=\cup_{n \in \mathbb{N}} A_{n}$. This implies that $\left(P\left(A_{n}\right): n \in \mathbb{N}\right)$ is a non-negative non-decreasing bounded sequence, and hence as a limit. It remains to show that $\lim _{n \rightarrow \infty} P\left(A_{n}\right)=P\left(\cup_{n \in \mathbb{N}} A_{n}\right)$. To this end, we observe that $\left(A_{1}, A_{2} \backslash A_{1}, \ldots, A_{n} \backslash A_{n-1}, \ldots\right)$ is a sequence of disjoint sets, with union A_{n} and $P\left(A_{i} \backslash A_{i-1}\right)=P\left(A_{i}\right)-P\left(A_{i-1}\right)$. Therefore, we can write for each $n \in \mathbb{N}$

$$
P\left(A_{n}\right)=P\left(A_{1}\right)+\sum_{i=1}^{n-1} P\left(A_{i} \backslash A_{i-1}\right)=P\left(A_{1}\right)+\sum_{i=1}^{n-1}\left(P\left(A_{i}\right)-P\left(A_{i-1}\right)\right)
$$

Hence, we can write for $\lim _{n \rightarrow \infty} A_{n}=\cup_{n \in \mathbb{N}} A_{n}$,

$$
P\left(\cup_{n \in \mathbb{N}} A_{n}\right)=P\left(A_{1}\right)+\sum_{i \in \mathbb{N}}\left(P\left(A_{i}\right)-P\left(A_{i-1}\right)\right)=P\left(A_{1}\right)+\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(P\left(A_{i}\right)-P\left(A_{i-1}\right)\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
$$

Continuity for decreasing sets. Similarly, for a non-increasing sequence of sets ($B_{n} \in \mathcal{F}: n \in \mathbb{N}$), we can find the non-decreasing sequence of sets ($B_{n}^{c} \in \mathcal{F}: n \in \mathbb{N}$). By the first part, we have

$$
P\left(\lim _{n \rightarrow \infty} B_{n}\right)=P\left(\cap_{n \in \mathbb{N}} B_{n}\right)=1-P\left(\cup_{n \in \mathbb{N}} B_{n}^{c}\right)=1-P\left(\lim _{n \rightarrow \infty} B_{n}^{c}\right)=1-\lim _{n \rightarrow \infty} P\left(B_{n}^{c}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)
$$

Continuity for general sequence of sets. We can similarly prove the general result for a sequence of sets $\left(A_{n} \in \mathcal{F}: n \in \mathbb{N}\right)$ such that the $\operatorname{limits}^{\lim }{ }_{n} A_{n}$ exists. We can define non-increasing sequences of sets $\left(E_{n}=\cup_{m \geqslant n} A_{m} \in \mathcal{F}: n \in \mathbb{N}\right)$ and non-decreasing sequences of sets $\left(F_{n}=\cap_{m \geqslant n} A_{m} \in \mathcal{F}: n \in \mathbb{N}\right)$. From the continuity of probability for the monotonic sets, we have

$$
P\left(\limsup _{n} A_{n}\right)=P\left(\cap_{n \in \mathbb{N}} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right), \quad P\left(\liminf _{n} A_{n}\right)=P\left(\cup_{n \in \mathbb{N}} F_{n}\right)=\lim _{n \rightarrow \infty} P\left(F_{n}\right)
$$

From the definition of two sequences of sets, we obtain

$$
P\left(E_{n}\right) \geqslant \sup _{m \geqslant n} P\left(A_{m}\right), \quad P\left(F_{n}\right) \leqslant \inf _{m \geqslant n} P\left(A_{m}\right) .
$$

Therefore taking limsup and liminf, we obtain

$$
\limsup _{n \in \mathbb{N}} P\left(E_{n}\right) \geqslant \inf _{n \in \mathbb{N}} \sup _{m \geqslant n} P\left(A_{m}\right) \geqslant \sup _{n \in \mathbb{N}} \inf _{m \geqslant n} P\left(A_{m}\right) \geqslant \liminf _{n \in \mathbb{N}} P\left(F_{n}\right) .
$$

Since $P\left(\lim _{n} A_{n}\right)=\lim _{n} P\left(E_{n}\right)=\lim _{n} P\left(F_{n}\right)$ exists, the result follows.

