
Lecture-02: Probability Function

1 Probability Function

Consider N trials of a random experiment over outcome space Ω and the event space F. Let Xn ∈Ω denote
the outcome of the experiment of the nth trial. We define the indicator function

1{Xn∈A} =

{
1, Xn ∈ A,
0, Xn /∈ A.

Let N(A) denote the number of times an event A occurs in N trials, then N(A) = ∑N
n=11{Xn∈A}. We denote

the relative frequency of an event A in N trials by N(A)
N . We observe the following properties of the relative

frequency.

1. For all A ∈ F, we have 0 6 N(A)
N 6 1. This follows from the fact that 0 6 N(A)6 N for any A ∈ F.

2. Suppose Ai ∈ F for all i ∈N such that Ai ∩ Aj = ∅ for all i 6= j, then N(∪i∈N Ai)
N = ∑i∈N

N(Ai)
N . This

follows from the fact that for disjoint events (Ai : i ∈N), we have

1{Xn∈∪i∈N Ai} = ∑
i∈N

1{Xn∈Ai}.

3. For the certain event Ω, we have N(Ω)
N = 1. This follows from the fact that N(Ω) = N.

Since the relative frequency is positive bounded, it may converge to a real number as N grows very large,
and the limit limN→∞

N(A)
N may exist. Inspired by the relative frequency, we list the following axioms for a

probability function P : F→ [0,1].

Axiom 1.1 (Axioms of probability). We define a probability measure on sample space Ω and event space
F by a function P : F→ [0,1] which satisfies the following axioms.

Non-negativity For all events A ∈ F, we have P(A)> 0.

σ-additivity For an infinite sequence of mutually disjoint events Ai ∈ F for all i ∈N such that Ai ∩ Aj = ∅ for all
i 6= j, we have P(∪i∈N Ai) = ∑i∈N P(Ai).

Certainity P(Ω) = 1.

Definition 1.2 (Limits of monotonic sets). For a sequence of non-decreasing sets (An : n ∈ N), we can
define the limit as

lim
n→∞

An , ∪n∈N An.

Similarly, for a sequence of non-increasing sets (An : n ∈N), we can define the limit as

lim
n→∞

An , ∩n∈N An.

Example 1.3 (Monotone sets). Consider (− 1
n ∈ R : n ∈N) a monotonically increasing sequence that

converges to the limit 0. We consider sequence of sets (An = [−2,− 1
n ] : n ∈N) and (Bn = [−2, 1

n ] : n ∈
N), which are monotonically increasing and decreasing respectively. We can verify the following limits

lim
n

An = ∪n∈N An = [−2,0), lim
n

Bn = ∩n∈NBn = [−2,0].
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Definition 1.4 (Limits of sets). For a sequence of sets (An : n ∈N), we can define the limit superior and
limit inferior of this sequence of sets as

limsup
n→∞

An , ∩n∈N ∪m>n Am = lim
n→∞
∪m>n Am, liminf

n→∞
An , ∪n∈N ∩m>n Am = lim

n→∞
∩m>n Am.

In general, liminfn→∞ An ⊆ limsupn→∞ An. If the limit superior and limit inferior of any sequence of sets
are equal, then the limit is defined as

lim
n→∞

An = limsup
n→∞

An = liminf
n→∞

An.

Example 1.5 (Sequence of sets with different limits). We consider sequence of sets (An = [−2, (−1)n +
1
n ] : n ∈N). It follows that Fn = [−2,−1] and

En = ∪m>n =

{
[−2,1 + 1

n+1 ], n odd,
[−2,1 + 1

n ], n even.

We can verify the following limits

liminf
n

An = ∪n∈NFn = [−2,−1], limsup
n

An = ∩n∈NFn = [−2,1].

Lemma 1.6. For a sequence of sets (An : n ∈N), we have liminfn→∞ An ⊆ limsupn→∞ An.

Proof. For each n ∈N, we define En , ∪m>n Am and Fn , ∩m>n Am. We see that Fn0 ⊆ Am for all m > n0. In
particular, we can write ∪n∈NFn ⊆ ∪m>n Am for each n ∈N, and hence the result follows.

Theorem 1.7. For any probability space (Ω,F, P), we have the following properties of probability measure.

impossibility: P(∅) = 0.

finite additivity: For disjoint events (A1, . . . , An) ∈ Fn such that Ai ∩ Aj = ∅ for i 6= j, we have P(∪n
i=1 Ai) = ∑n

i=1 P(Ai).

monotonicity: If events A, B ∈ F such that A ⊆ B, then P(A)6 P(B).

inclusion-exclusion: For any events A, B ∈ F, we have P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

continuity: For an increasing sequence of events (Ai ∈ F : i ∈N) such that limn An exists, we have P(limn→∞ An) =
limn→∞ P(An).

Proof. We consider the probability space (Ω,F, P).

1. We take disjoint events (Ei : i ∈N) where E1 = Ω and Ei = ∅ for i > 2. It follows that ∪i∈NEi = Ω
and (Ei : i ∈N) is a collection of mutually disjoint events. From the countable additivity axiom of
probability, it follows that

P(Ω) = P(Ω) + ∑
i>2

P(Ei).

Since P(Ei)> 0, it implies that P(∅) = 0.

2. We see that finite additivity follows from the countable additivity. We consider disjoint events A1, . . . , An,
and take Ai = ∅ for all i > n. It follows that the sequence of sets (Ai : i ∈N) is mutually disjoint, and
since P(∅) = 0, it follows that

P( ∑
i∈N

Ai) = P(
n

∑
i=1

Ai) =
n

∑
i=1

P(Ai) + ∑
i>n

P(∅) =
n

∑
i=1

P(Ai).
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3. For events A, B ∈ F such that A⊆ B, we can take disjoint events E1 = A and E2 = B \ A. From closure
under complements and intersection, it follows that E2 ∈ F. From non-negativity of probability, we
have P(E2)> 0. Finally, the result follows from finite additivity of disjoint events

P(B) = P(E1 ∪ E2) = P(E1) + P(E2)> P(A).

4. For any two events A, B ∈ F, we can write the following events as disjoint unions

A = (A \ B) ∪ (A ∩ B), B = (B \ A) ∪ (A ∩ B), A ∪ B = (A \ B) ∪ (A ∩ B) ∪ (B \ A).

The result follows from the finite additivity of probability of disjoint events.

5. We show the continuity for non-decreasing and non-increasing sequence of sets.
Continuity for increasing sets. Let (An ∈ F : n ∈N) be a non-decreasing sequence of events, then
limn→∞ An = ∪n∈N An. This implies that (P(An) : n ∈N) is a non-negative non-decreasing bounded
sequence, and hence as a limit. It remains to show that limn→∞ P(An) = P(∪n∈N An). To this end,
we observe that (A1, A2 \ A1, . . . , An \ An−1, . . . ) is a sequence of disjoint sets, with union An and
P(Ai \ Ai−1) = P(Ai)− P(Ai−1). Therefore, we can write for each n ∈N

P(An) = P(A1) +
n−1

∑
i=1

P(Ai \ Ai−1) = P(A1) +
n−1

∑
i=1

(P(Ai)− P(Ai−1)).

Hence, we can write for limn→∞ An = ∪n∈N An,

P(∪n∈N An) = P(A1) + ∑
i∈N

(P(Ai)− P(Ai−1)) = P(A1) + lim
n→∞

n

∑
i=1

(P(Ai)− P(Ai−1)) = lim
n→∞

P(An).

Continuity for decreasing sets. Similarly, for a non-increasing sequence of sets (Bn ∈ F : n ∈N), we
can find the non-decreasing sequence of sets (Bc

n ∈ F : n ∈N). By the first part, we have

P( lim
n→∞

Bn) = P(∩n∈NBn) = 1− P(∪n∈NBc
n) = 1− P( lim

n→∞
Bc

n) = 1− lim
n→∞

P(Bc
n) = lim

n→∞
P(Bn).

Continuity for general sequence of sets. We can similarly prove the general result for a sequence of
sets (An ∈ F : n ∈N) such that the limits limn An exists. We can define non-increasing sequences of
sets (En = ∪m>n Am ∈ F : n ∈N) and non-decreasing sequences of sets (Fn = ∩m>n Am ∈ F : n ∈N).
From the continuity of probability for the monotonic sets, we have

P(limsup
n

An) = P(∩n∈NEn) = lim
n→∞

P(En), P(liminf
n

An) = P(∪n∈NFn) = lim
n→∞

P(Fn).

From the definition of two sequences of sets, we obtain

P(En)> sup
m>n

P(Am), P(Fn)6 inf
m>n

P(Am).

Therefore taking limsup and liminf, we obtain

limsup
n∈N

P(En)> inf
n∈N

sup
m>n

P(Am)> sup
n∈N

inf
m>n

P(Am)> liminf
n∈N

P(Fn).

Since P(limn An) = limn P(En) = limn P(Fn) exists, the result follows.
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