Lecture-02: Probability Function

1 Probability Function

Consider N trials of a random experiment over outcome space (2 and the event space JF. Let X;, € (2 denote
the outcome of the experiment of the nth trial. We define the indicator function

) {1, X.€A4,
Xnca} =30, x, ¢ A.

Let N(A) denote the number of times an event A occurs in N trials, then N(A) = YN | 1 (x,e4}- We denote
(

the relative frequency of an event A in N trials by A) We observe the following properties of the relative

frequency.

1. Forall A € F, we have 0 < % < 1. This follows from the fact that 0 < N(A) < N forany A € 7.

2. Suppose A; € F for all i € N such that A; N A; = @ for all i # j, then (’eiNA =Yic
follows from the fact that for disjoint events (A; : i € IN), we have

Lix,clind} = 2 Lix,ean-
i€eIN

3. For the certain event (), we have Ng\, ) = 1. This follows from the fact that N () =N.

Since the relative frequency is positive bounded, it may converge to a real number as N grows very large,
N(A)

and the limit limy ., =3~ may exist. Inspired by the relative frequency, we list the following axioms for a
probability function P : F — [0,1].

Axiom 1.1 (Axioms of probability). We define a probability measure on sample space () and event space
F by a function P : ¥ — [0,1] which satisfies the following axioms.

Non-negativity For all events A € F, we have P(A) > 0.

o-additivity For an infinite sequence of mutually disjoint events A; € F for all i € N such that A; N A; = @ for all
i # j, we have P(UienA;) = Lien P(A)).-
Certainity P(Q)) =1.
Definition 1.2 (Limits of monotonic sets). For a sequence of non-decreasing sets (A, :n € N), we can

define the limit as
hm An é UHGNATZ‘

n—oo
Similarly, for a sequence of non-increasing sets (A, : n € IN), we can define the limit as
llm An — mneﬂ\]An

n—oo

Example 1.3 (Monotone sets). Consider (—% € R :n € N) a monotonically increasing sequence that

converges to the limit 0. We consider sequence of sets (A, = [-2,—1]:n € N) and (B, =[-2,1]:n¢€
IN), which are monotonically increasing and decreasing respectively. We can verify the following limits
li’EnA71 = UpenAn = [—2,0), hﬁan = NpenBn = [—2,0].



Definition 1.4 (Limits of sets). For a sequence of sets (A, : n € IN), we can define the limit superior and
limit inferior of this sequence of sets as

limsup Ay, 2 MNyen Umsn Am = Im Up>nAm, liminf A, £ U,en Nmzn Am = Im Ny>pAm.
n—s00 n—o00 n—,oo n—o0

In general, liminf, o A, C limsup,,_,  Ay. If the limit superior and limit inferior of any sequence of sets
are equal, then the limit is defined as

lim A, =limsup A, = liminf A,.
n—,oo n—,oo

n—o0

Example 1.5 (Sequence of sets with different limits). We consider sequence of sets (A4, = [—2,(—1)" +
1.7 € N). It follows that F, = [-2,—1] and

[-2,1+ -1:], nodd,
E, =U — n+1
"o mmen {[—2,1 +1], neven
We can verify the following limits
lirriliian,1 =UpenFr =[-2,-1], limsup A, = NyenFr = [—2,1].
n

Lemma 1.6. For a sequence of sets (A, : n € IN), we have liminf,, 0o Ay C limsup,,_, . Ay.

A

Proof. For each n € N, we define E, £ UmznAm and F; = Ny A We see that Fyy C Ay, for all m 2> ng. In
particular, we can write U,eNFy € Upy»pn Ay for each n € IN, and hence the result follows. O]

Theorem 1.7. For any probability space (Q), F, P), we have the following properties of probability measure.
impossibility: P(D) = 0.
finite additivity: For disjoint events (Ay,..., An) € F" such that A; N Aj = @ for i # j, we have P(UI_; A;) = YL P(A;).
monotonicity: If events A,B € F such that A C B, then P(A) < P(B).
inclusion-exclusion: For any events A,B € F, we have P(A U B) = P(A) + P(B) — P(ANB).

continuity: For an increasing sequence of events (A; € F :i € IN) such that lim, A, exists, we have P(lim,_—c Ay) =
limy, 00 P(Ay).

Proof. We consider the probability space (Q2,F, P).

1. We take disjoint events (E; : i € IN) where E; = Q) and E; = @ for i > 2. It follows that UjenE; = Q
and (E; : i € IN) is a collection of mutually disjoint events. From the countable additivity axiom of
probability, it follows that

P(Q) =P(Q) + ) P(E).

i>2
Since P(E;) > 0, it implies that P(®) = 0.
2. We see that finite additivity follows from the countable additivity. We consider disjoint events Ay, ..., A,

and take A; = @ for all i > n. It follows that the sequence of sets (4; : i € IN) is mutually disjoint, and
since P(®) = 0, it follows that

n

P(A;))+ ) P(@) =) P(A)).

i=1 i>n i=1

™=

P(Y Ay) =P<iAi> _

icIN



3. For events A, B € F such that A C B, we can take disjoint events E; = A and E; = B\ A. From closure
under complements and intersection, it follows that E; € F. From non-negativity of probability, we
have P(E;) > 0. Finally, the result follows from finite additivity of disjoint events

P(B) = P(E1 U Ez) = P(Eq1) + P(Ez) > P(A).

4. For any two events A, B € J, we can write the following events as disjoint unions
A=(A\B)U(ANB), B=(B\A)U(ANB), AUB=(A\B)U(ANB)U(B\A).
The result follows from the finite additivity of probability of disjoint events.

5. We show the continuity for non-decreasing and non-increasing sequence of sets.
Continuity for increasing sets. Let (A, € F: n € IN) be a non-decreasing sequence of events, then
lim, 00 Ap = UpeNnAy. This implies that (P(Ay) : n € IN) is a non-negative non-decreasing bounded
sequence, and hence as a limit. It remains to show that lim, e P(A,) = P(UyenAn). To this end,
we observe that (A1,Ax \ A,...,An \ Ay—1,...) is a sequence of disjoint sets, with union A, and
P(A;\ Ai—1) =P(A;) — P(A;_1). Therefore, we can write for each n € N

n—1 n—1
P(An) = P(A1) + ) P(A;\ Ai_1) = P(A1) + ) (P(Aj) — P(Ai1)).
i=1 i=1

Hence, we can write for limy, 00 Ay = UpeNAn,
n
P(UpenAn) = P(A1) + Y (P(A;) = P(Ai_1)) = P(A1) + lim ) (P(A;) — P(Aj1)) = Jim P(Ay).

n—o0

icIN i=1

Continuity for decreasing sets. Similarly, for a non-increasing sequence of sets (B, € ¥ :n € N), we
can find the non-decreasing sequence of sets (B, € F : n € IN). By the first part, we have

P(lim By) = P(NnenBa) =1 - P(UnenBy) = 1 - P(lim Bj) =1 lim P(B;) = lim P(B,).

n—oo n—oo n—oo

Continuity for general sequence of sets. We can similarly prove the general result for a sequence of
sets (A, € F:n € N) such that the limits lim,, A, exists. We can define non-increasing sequences of
sets (E; = Up=nAm € F : n € IN) and non-decreasing sequences of sets (F, = Ny>n Ay € F:n € N).
From the continuity of probability for the monotonic sets, we have

P(limsup Ap) = P(NyenEn) = lim P(E,), P(liminfA,) = P(UyenFn) = lim P(F,).
n n—re0 n n—oo

From the definition of two sequences of sets, we obtain

P(E,) = supP(Awm), P(F,) < inf P(An).

m>=n m>=n
Therefore taking limsup and liminf, we obtain

limsup P(E;) > inf sup P(A,;,) > sup inf P(A,) > lim]}\rllfP(Fn).
ne

neN neNy >y neNm=n

Since P(lim, A,) = lim, P(E,) = lim,, P(F,) exists, the result follows.
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