Lecture-03: Independence

1 Conditional Probability

Consider N trials of a random experiment over outcome space Ω and the event space \mathcal{F}. Let $X_{n} \in \Omega$ denote the outcome of the experiment of the nth trial. Consider two events $A, B \in \mathcal{F}$ and denote the number of times event A and event B occurs by $N(A)$ and $N(B)$ respectively. We denote the number of times both events A and B occurred by $N(A \cap B)$. Then, we can write these numbers in terms of indicator functions as

$$
N(A)=\sum_{n=1}^{N} \mathbb{1}_{\left\{X_{n} \in A\right\}}, \quad N(B)=\sum_{n=1}^{N} \mathbb{1}_{\left\{X_{n} \in B\right\}}, \quad N(A \cap B)=\sum_{n=1}^{N} \mathbb{1}_{\left\{X_{n} \in A \cap B\right\}}
$$

We denote the relative frequency of events $A, B, A \cap B$ in N trials by $\frac{N(A)}{N}, \frac{N(B)}{N}, \frac{N(A \cap B)}{N}$ respectively. We can find the relative frequency of events A, on the trials where B occurred as

$$
\frac{\frac{N(A \cap B)}{N}}{\frac{N(B)}{N}}=\frac{N(A \cap B)}{N(B)} .
$$

Inspired by the relative frequency, we define the conditional probability function conditioned on events. Fix an event $B \in \mathcal{F}$ such that $P(B)>0$, we can define the conditional probability $P(\cdot \mid B): \mathcal{F} \rightarrow[0,1]$ of any event $A \in \mathcal{F}$ conditioned on the event B as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

Lemma 1.1 (Conditional probability). For any event $B \in \mathcal{F}$ such that $P(B) \geqslant 0$, the conditional probability $P(\cdot \mid B): \mathcal{F} \rightarrow[0,1]$ is a probability measure on space (Ω, \mathcal{F}).

Proof. We will show that the conditional probability satisfies all four axioms of a probability measure.
Non-negativity: For all events $A \in \mathcal{F}$, we have $P(A \mid B) \geqslant 0$ since $P(A \cap B) \geqslant 0$.
σ-additivity: For an infinite sequence of mutually disjoint events ($A_{i} \in \mathcal{F}: i \in \mathbb{N}$) such that $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$, we have $P\left(\cup_{i \in \mathbb{N}} A_{i} \mid B\right)=\sum_{i \in \mathbb{N}} P\left(A_{i} \mid B\right)$. This follows from disjointness of the sequence $\left(A_{i} \cap B \in \mathcal{F}\right.$: $i \in \mathbb{N})$.

Certainty: Since $\Omega \cap B=B$, we have $P(\Omega \mid B)=1$.

2 Law of Total Probability

Theorem 2.1 (Law of total probability). Consider a countable partition $B=\left(B_{n}: n \in \mathbb{N}\right)$ of the sample space Ω, i.e. $B_{m} \cap B_{n}=\varnothing$ for all $m \neq n$, and $\cup_{n \in \mathbb{N}} B_{n}=\Omega$. Then, for any event $A \in \mathcal{F}$, we have

$$
P(A)=\sum_{n \in \mathbb{N}} P\left(A \cap B_{n}\right) .
$$

Proof. We can expand any event $A \in \mathcal{F}$ in terms of any partition B of the sample space Ω as

$$
A=A \cap \Omega=A \cap\left(\cup_{n \in \mathbb{N}} B_{n}\right)=\cup_{n \in \mathbb{N}}\left(A \cap B_{n}\right)
$$

From the disjointness of the sets $\left(B_{n}\right)$, it follows that $\left(A \cap B_{n} \in \mathcal{F}: n \in \mathbb{N}\right)$ is a sequence of disjoint sets. The result follows from the countable additivity of probability of disjoint sets.

Remark 1. For any partition B of the sample space Ω, if $P\left(B_{n}\right)>0$ for all $n \in \mathbb{N}$, then from the law of total probability and the definition of conditional probability, we have

$$
P(A)=\sum_{n \in \mathbb{N}} P\left(A \mid B_{n}\right) P\left(B_{n}\right)
$$

3 Independence

Definition 3.1 (Independence of events). For a probability space (Ω, \mathcal{F}, P), a family of events $\left(A_{i} \in \mathcal{F}: i \in I\right)$ is said to be independent, if for any finite set $F \subseteq I$, we have

$$
P\left(\cap_{i \in F} A_{i}\right)=\prod_{i \in F} P\left(A_{i}\right) .
$$

Remark 2. The certain event Ω and the impossible event \varnothing are always independent to every event $A \in \mathcal{F}$.

Example 3.2 (Two coin tosses). Consider two coin tosses, such that the sample space is $\Omega=$ $\{H H, H T, T H, T T\}$, and the event space is $\mathcal{F}=2^{\Omega}$. It suffices to define a probability function $P: \mathcal{F} \rightarrow$ $[0,1]$ on the sample space. We define one such probability function P, such that

$$
P(\{H H\})=P(\{H T\})=P(\{T H\})=P(\{T T\})=\frac{1}{4}
$$

Let event $A=\{H H, H T\}$ and $B=\{H H, T H\}$ correspond to getting a head on the first or the second toss respectively.

From the defined probability function, we obtain the probability of getting a tail on the first or the second toss is $\frac{1}{2}$, and identical to the probability of getting a head on the first or the second toss. That is, $P(A)=P(B)=\frac{1}{2}$ and the intersecting event $A \cap B=\{H H\}$ with the probability $P(A \cap B)=\frac{1}{4}$. That is, for events $A, B \in \mathcal{F}$, we have

$$
P(A \cap B)=P(A) P(B)
$$

That is, events A and B are independent.

Remark 3. For two independent events $A, B \in \mathcal{F}$ such that $P(A \cap B)>0$, we have $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$. If either $P(A)=0$ or $P(B)=0$, then $P(A \cap B)=0$.

Example 3.3 (Counter example). Consider a probability space (Ω, \mathcal{F}, P) and the events $A_{1}, A_{2}, A_{3} \in \mathcal{F}$. The condition $P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)$ is not sufficient to guarantee independence of the three events. In particular, we see that if

$$
P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right), \quad P\left(A_{1} \cap A_{2} \cap A_{3}^{c}\right) \neq P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}^{c}\right)
$$

then $P\left(A_{1} \cap A_{2}\right)=P\left(A_{1} \cap A_{2} \cap A_{3}\right)+P\left(A_{1} \cap A_{2} \cap A_{3}^{\mathcal{c}}\right) \neq P\left(A_{1}\right) P\left(A_{2}\right)$.

4 Conditional Independence

Definition 4.1 (Conditional independence of events). For a probability space (Ω, \mathcal{F}, P), a family of events $\left(A_{i} \in \mathcal{F}: i \in I\right)$ is said to be conditionally independent given an event $C \in \mathcal{F}$ such that $P(C)>0$, if for any finite set $F \subseteq I$, we have

$$
P\left(\cap_{i \in F} A_{i} \mid C\right)=\prod_{i \in F} P\left(A_{i} \mid C\right)
$$

Remark 4. Let $C \in \mathcal{F}$ be an event such that $P(C)>0$ Two events $A, B \in \mathcal{F}$ are said to be conditionally independent given event C, if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

If the event $C=\Omega$, it implies that A, B are independent events.
Remark 5. Two events may be independent, but not conditionally independent and vice versa.

Example 4.2. Consider two non-independent events $A, B \in \mathcal{F}$ such that $P(A)>0$. Then the events A and B are conditionally independent given A. To see this, we observe that

$$
P(A \cap B \mid A)=\frac{P(A \cap B)}{P(A)}=P(B \mid A) P(A \mid A)
$$

Example 4.3. Consider two independent events $A, B \in \mathcal{F}$ such that $P(A \cap B)>0$ and $P(A \cup B)<1$. Then the events A and B are not conditionally independent given $A \cup B$. To see this, we observe that

$$
P(A \cap B \mid A \cup B)=\frac{P((A \cap B) \cap(A \cup B))}{P(A)}=\frac{P(A \cap B)}{P(A \cup B)}=\frac{P(A) P(B)}{P(A \cup B)}=P(A \mid A \cup B) P(B)
$$

