Lecture-05: Random Vectors

1 Random vectors

Definition 1.1 (Random vectors). Consider a probability space (Ω, \mathcal{F}, P) and a finite $n \in \mathbb{N}$. A **random vector** $X : \Omega \to \mathbb{R}^n$ is a mapping from sample space to an n-length real-valued vector, such that for $x \in \mathbb{R}^n$, the event

$$A(x) \triangleq \{\omega \in \Omega : X_1(\omega) \leqslant x_1, \dots, X_n(\omega) \leqslant x_n\} = \bigcap_{i=1}^n X_i^{-1}(-\infty, x_i] \in \mathcal{F}.$$

We say that the random vector X is \mathcal{F} -measurable and the probability of this event is denoted by

$$F_{X_1,...,X_n}(x_1,...,x_n) \equiv F_X(x) \triangleq P(A(x)) = P(\{X_1 \leqslant x_1,...,X_n \leqslant x_n\}) = P(\bigcap_{i=1}^n X_i^{-1}(-\infty,x_i]).$$

The function $F_X : \mathbb{R}^n \to [0,1]$ is called the **joint distribution function** of a random vector X.

Definition 1.2 (Projection). For a vector $x \in \mathbb{R}^n$, we can define $\pi_i : \mathbb{R}^n \to \mathbb{R}$ is the **projection** of an n-length vector onto its i-th component, such that $\pi_i(x) = x_i$.

Remark 1. For any $A \subseteq \mathbb{R}$, we see that $\pi_i^{-1}(A) = \mathbb{R} \times \cdots \times A \times \cdots \times \mathbb{R}$.

Lemma 1.3 (Marginal distribution). Consider a random vector $X : \Omega \to \mathbb{R}^n$ defined on a probability space (Ω, \mathcal{F}, P) with the joint distribution $F_X : \mathbb{R}^n \to [0,1]$. For each $i \in [n]$, projection $\pi_i(X)$ of a random vector X is a random variable $X_i : \Omega \to \mathbb{R}$. The distribution of X_i is called the i-th marginal distribution and can be obtained from the joint distribution as

$$F_{X_i}(x_i) = \lim_{x_i \to \infty, \text{ for all } j \neq i} F_X(x).$$

Proof. For each $i \in [n]$ and $x_i \in \mathbb{R}$, we can define sets $A_i(x_i) \triangleq \{X_i \leq x_i\}$ such that

$$A_i(x_i) = X_i^{-1}(-\infty, x_i] = X^{-1} \circ \pi_i^{-1}(-\infty, x_i] = X^{-1}(\mathbb{R} \times \cdots \times (-\infty, x_i] \times \cdots \times \mathbb{R}) = A(x) \in \mathcal{F},$$

where $x = (\infty, ..., x_i, ..., \infty)$. It follows from the definition that X_i is a random variable, and the marginal distribution is given by the expression in the Lemma statement.

Remark 2. For a random vector $X : \Omega \to \mathbb{R}^n$ defined on the probability space (Ω, \mathcal{F}, P) and any $x \in \mathbb{R}^n$, the event $A(x) = \bigcap_{i=1}^n \{X_i \leq x_i\} = \bigcap_{i=1}^n A_i(x_i)$.

Lemma 1.4 (Properties of the joint distribution function). *Then the joint distribution function* $F_X : \mathbb{R}^n \to [0,1]$ *satisfies the following properties.*

- (i) For $x, y \in \mathbb{R}^n$ such that $x_i \leq y_i$ for each $i \in [n]$, we have $F_X(x) \leq F_X(y)$.
- (ii) The function $F_X(x)$ is right continuous at all points $x \in \mathbb{R}^n$.
- (iii) The lower limit is $\lim_{x_i \to -\infty} F_X(x) = 0$, and the upper limit is $\lim_{x_i \to \infty, i \in [n]} F_X(x) = 1$.

Proof. Consider a random vector $X: \Omega \to \mathbb{R}^n$ defined on the probability space (Ω, \mathcal{F}, P) and any $x \in \mathbb{R}^n$.

- (i) We can verify that $A(x) = \bigcap_{i=1}^{n} A_i(x_i) \subseteq \bigcap_{i=1}^{n} A_i(y_i) = A(y)$. The result follows from the monotonicity of probability measure.
- (ii) The proof is similar to the proof for single random variable.

(iii) The event $A(x) = \emptyset$ when $x_i = -\infty$ for some $i \in [n]$ and $A(x) = \Omega$ when $x_i = \infty$ for all $i \in [n]$, hence the result follow.

Example 1.5 (Probability of rectangular events). Consider a probability space (Ω, \mathcal{F}, P) and a random vector $X : \Omega \to \mathbb{R}^2$. Let events $B_1 \triangleq \{x_1 < X_1 \leq y_1\} = A_1(y_1) \setminus A_1(x_1) \in \mathcal{F}$ and $B_2 \triangleq \{x_2 < X_2 \leq y_2\} = A_2(y_2) \setminus A_2(x_2) \in \mathcal{F}$. The marginal probabilities are given by

$$P(B_1) = P(A_1(y_1)) - P(A_1(x_1)) = F_{X_1}(y_1) - F_{X_1}(x_1), \quad P(B_2) = P(A_2(y_2)) - P(A_2(x_2)) = F_{X_2}(y_2) - F_{X_2}(x_2).$$

Then the probability of the rectangular event $B_1 \cap B_2 = (A(x_2, y_2) \setminus A(x_1, y_2)) \setminus (A(x_2, y_1) \setminus A(x_1, y_1)) \in \mathcal{F}$ is

$$P(B_1 \cap B_2) = (F_X(x_2, y_2) - F_X(x_1, y_2)) - (F_X(x_2, y_1) - F_X(x_1, y_1)).$$

1.1 Independence of random variables

Definition 1.6 (Independent and identically distributed). A random vector $X : \Omega \to \mathbb{R}^n$ defined on the probability space (Ω, \mathcal{F}, P) is called **independent** if

$$F_X(x) = \prod_{i=1}^n F_{X_i}(x_i),$$

The random vector *X* is called **identically distributed** if each of its components have the identical marginal distribution, i.e.

$$F_{X_i} = F_{X_1}$$
, for all $i \in [n]$.

1.2 Continuous random vectors

Definition 1.7 (Joint density function). For jointly continuous random vector $X: \Omega \to \mathbb{R}^n$ with joint distribution function $F_X: \mathbb{R}^n \to [0,1]$, there exists a **joint density function** $f_X: \mathbb{R}^n \to [0,\infty)$ such that $f_X(x) = \frac{d^n}{dx_1...dx_n} F_X(x)$, and

$$F_X(x) = \int_{u_1 \leqslant x_1} du_1 \cdots \int_{u_n \leqslant x_n} du_n f_X(u_1, \dots, u_n).$$

Remark 3. For an independent continuous random vector $X : \Omega \to \mathbb{R}^n$, we have $f_X(x) = \prod_{i=1}^n f_{X_i}(x_i)$ for all $x \in \mathbb{R}^n$.

Example 1.8 (Gaussian random vectors). For a probability space (Ω, \mathcal{F}, P) , Gaussian random vector is a continuous random vector $X : \Omega \to \mathbb{R}^n$ defined by its density function

$$f_X(x) = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) \text{ for all } x \in \mathbb{R}^n,$$

where the mean vector $\mu \in \mathbb{R}^n$ and the positive definite covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. The components of the Gaussian random vector are Gaussian random variables, which are independent when Σ is diagonal matrix and are identically distributed when $\Sigma = \sigma^2 I$.

1.3 Discrete random vectors

Definition 1.9 (Discrete random vectors). If a random vector $X : \Omega \to \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \subseteq \mathbb{R}^n$ takes countable values in \mathbb{R}^n , then it is called a **discrete random vector**. That is, the range of random vector X is countable, and the random vector is completely specified by the **probability mass function**

$$P_X(x) = P(\bigcap_{i=1}^n \{X_i = x_i\})$$
 for all $x \in \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$.

Remark 4. For an independent discrete random vector $X : \Omega \to \mathbb{R}^n$, we have $P_X(x) = \prod_{i=1}^n P_{X_i}(x_i)$ for each $x \in \mathbb{R}^n$.

Example 1.10 (Multiple coin tosses). For a probability space (Ω, \mathcal{F}, P) , such that $\Omega = \{H, T\}^n$, $\mathcal{F} = 2^{\Omega}$, $P(\omega) = \frac{1}{2^n}$ for all $\omega \in \Omega$.

Consider the random vector $X : \Omega \to \mathbb{R}$ such that $X_i(\omega) = \mathbb{1}_{\{\omega_i = H\}}$ for each $i \in [n]$. Observe that $X_i(\omega)$ is a bijection from the sample space to the set $\{0,1\}^n$. In particular, X is a discrete random variable.

For any $x \in [0,1]^n$, we can write $N(x) = \sum_{i=1}^n \mathbb{1}_{\{[0,1)\}}(x)$. Further, we can write the joint distribution as

$$F_X(x) = \begin{cases} 1, & x_i \geqslant 1 \text{ for all } i \in [n], \\ \frac{1}{2^{N(x)}}, & x_i \in [0,1] \text{ for all } i \in [n], \\ 0, & x_i < 0 \text{ for some } i \in [n]. \end{cases}$$

We can derive the marginal distribution for *i*-th component as

$$F_{X_i}(x_i) = \begin{cases} 1, & x_i \geqslant 1, \\ \frac{1}{2}, & x_i \in [0, 1), \\ 0, & x_i < 0. \end{cases}$$

Therefore, it follows that *X* is an **i.i.d.** vector.