Lecture-05: Random Vectors

1 Random vectors

Definition 1.1 (Random vectors). Consider a probability space (Ω, \mathcal{F}, P) and a finite $n \in \mathbb{N}$. A random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ is a mapping from sample space to an n-length real-valued vector, such that for $x \in \mathbb{R}^{n}$, the event

$$
A(x) \triangleq\left\{\omega \in \Omega: X_{1}(\omega) \leqslant x_{1}, \ldots, X_{n}(\omega) \leqslant x_{n}\right\}=\cap_{i=1}^{n} X_{i}^{-1}\left(-\infty, x_{i}\right] \in \mathcal{F}
$$

We say that the random vector X is \mathcal{F}-measurable and the probability of this event is denoted by

$$
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \equiv F_{X}(x) \triangleq P(A(x))=P\left(\left\{X_{1} \leqslant x_{1}, \ldots, X_{n} \leqslant x_{n}\right\}\right)=P\left(\cap_{i=1}^{n} X_{i}^{-1}\left(-\infty, x_{i}\right]\right)
$$

The function $F_{X}: \mathbb{R}^{n} \rightarrow[0,1]$ is called the joint distribution function of a random vector X.
Definition 1.2 (Projection). For a vector $x \in \mathbb{R}^{n}$, we can define $\pi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the projection of an n-length vector onto its i-th component, such that $\pi_{i}(x)=x_{i}$.

Remark 1. For any $A \subseteq \mathbb{R}$, we see that $\pi_{i}^{-1}(A)=\mathbb{R} \times \cdots \times A \times \cdots \times \mathbb{R}$.
Lemma 1.3 (Marginal distribution). Consider a random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on a probability space (Ω, \mathcal{F}, P) with the joint distribution $F_{X}: \mathbb{R}^{n} \rightarrow[0,1]$. For each $i \in[n]$, projection $\pi_{i}(X)$ of a random vector X is a random variable $X_{i}: \Omega \rightarrow \mathbb{R}$. The distribution of X_{i} is called the i-th marginal distribution and can be obtained from the joint distribution as

$$
F_{X_{i}}\left(x_{i}\right)=\lim _{x_{j} \rightarrow \infty, \text { for all } j \neq i} F_{X}(x)
$$

Proof. For each $i \in[n]$ and $x_{i} \in \mathbb{R}$, we can define sets $A_{i}\left(x_{i}\right) \triangleq\left\{X_{i} \leqslant x_{i}\right\}$ such that

$$
A_{i}\left(x_{i}\right)=X_{i}^{-1}\left(-\infty, x_{i}\right]=X^{-1} \circ \pi_{i}^{-1}\left(-\infty, x_{i}\right]=X^{-1}\left(\mathbb{R} \times \cdots \times\left(-\infty, x_{i}\right] \times \cdots \times \mathbb{R}\right)=A(x) \in \mathcal{F},
$$

where $x=\left(\infty, \ldots, x_{i}, \ldots, \infty\right)$. It follows from the definition that X_{i} is a random variable, and the marginal distribution is given by the expression in the Lemma statement.

Remark 2. For a random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on the probability space (Ω, \mathcal{F}, P) and any $x \in \mathbb{R}^{n}$, the event $A(x)=\cap_{i=1}^{n}\left\{X_{i} \leqslant x_{i}\right\}=\cap_{i=1}^{n} A_{i}\left(x_{i}\right)$.
Lemma 1.4 (Properties of the joint distribution function). Then the joint distribution function $F_{X}: \mathbb{R}^{n} \rightarrow[0,1]$ satisfies the following properties.
(i) For $x, y \in \mathbb{R}^{n}$ such that $x_{i} \leqslant y_{i}$ for each $i \in[n]$, we have $F_{X}(x) \leqslant F_{X}(y)$.
(ii) The function $F_{X}(x)$ is right continuous at all points $x \in \mathbb{R}^{n}$.
(iii) The lower limit is $\lim _{x_{i} \rightarrow-\infty} F_{X}(x)=0$, and the upper limit is $\lim _{x_{i} \rightarrow \infty, i \in[n]} F_{X}(x)=1$.

Proof. Consider a random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on the probability space (Ω, \mathcal{F}, P) and any $x \in \mathbb{R}^{n}$.
(i) We can verify that $A(x)=\cap_{i=1}^{n} A_{i}\left(x_{i}\right) \subseteq \cap_{i=1}^{n} A_{i}\left(y_{i}\right)=A(y)$. The result follows from the monotonicity of probability measure.
(ii) The proof is similar to the proof for single random variable.
(iii) The event $A(x)=\varnothing$ when $x_{i}=-\infty$ for some $i \in[n]$ and $A(x)=\Omega$ when $x_{i}=\infty$ for all $i \in[n]$, hence the result follow.

Example 1.5 (Probability of rectangular events). Consider a probability space (Ω, \mathcal{F}, P) and a random vector $X: \Omega \rightarrow \mathbb{R}^{2}$. Let events $B_{1} \triangleq\left\{x_{1}<X_{1} \leqslant y_{1}\right\}=A_{1}\left(y_{1}\right) \backslash A_{1}\left(x_{1}\right) \in \mathcal{F}$ and $B_{2} \triangleq\left\{x_{2}<X_{2} \leqslant y_{2}\right\}=$ $A_{2}\left(y_{2}\right) \backslash A_{2}\left(x_{2}\right) \in \mathcal{F}$. The marginal probabilities are given by
$P\left(B_{1}\right)=P\left(A_{1}\left(y_{1}\right)\right)-P\left(A_{1}\left(x_{1}\right)\right)=F_{X_{1}}\left(y_{1}\right)-F_{X_{1}}\left(x_{1}\right), \quad P\left(B_{2}\right)=P\left(A_{2}\left(y_{2}\right)\right)-P\left(A_{2}\left(x_{2}\right)\right)=F_{X_{2}}\left(y_{2}\right)-F_{X_{2}}\left(x_{2}\right)$.
Then the probability of the rectangular event $B_{1} \cap B_{2}=\left(A\left(x_{2}, y_{2}\right) \backslash A\left(x_{1}, y_{2}\right)\right) \backslash\left(A\left(x_{2}, y_{1}\right) \backslash A\left(x_{1}, y_{1}\right)\right) \in$ \mathcal{F} is

$$
P\left(B_{1} \cap B_{2}\right)=\left(F_{X}\left(x_{2}, y_{2}\right)-F_{X}\left(x_{1}, y_{2}\right)\right)-\left(F_{X}\left(x_{2}, y_{1}\right)-F_{X}\left(x_{1}, y_{1}\right)\right)
$$

1.1 Independence of random variables

Definition 1.6 (Independent and identically distributed). A random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined on the probability space (Ω, \mathcal{F}, P) is called independent if

$$
F_{X}(x)=\prod_{i=1}^{n} F_{X_{i}}\left(x_{i}\right)
$$

The random vector X is called identically distributed if each of its components have the identical marginal distribution, i.e.

$$
F_{X_{i}}=F_{X_{1}}, \text { for all } i \in[n]
$$

1.2 Continuous random vectors

Definition 1.7 (Joint density function). For jointly continuous random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ with joint distribution function $F_{X}: \mathbb{R}^{n} \rightarrow[0,1]$, there exists a joint density function $f_{X}: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that $f_{X}(x)=\frac{d^{n}}{d x_{1} \ldots d x_{n}} F_{X}(x)$, and

$$
F_{X}(x)=\int_{u_{1} \leqslant x_{1}} d u_{1} \cdots \int_{u_{n} \leqslant x_{n}} d u_{n} f_{X}\left(u_{1}, \ldots, u_{n}\right)
$$

Remark 3. For an independent continuous random vector $X: \Omega \rightarrow \mathbb{R}^{n}$, we have $f_{X}(x)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)$ for all $x \in \mathbb{R}^{n}$.

Example 1.8 (Gaussian random vectors). For a probability space (Ω, \mathcal{F}, P), Gaussian random vector is a continuous random vector $X: \Omega \rightarrow \mathbb{R}^{n}$ defined by its density function

$$
f_{X}(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) \text { for all } x \in \mathbb{R}^{n}
$$

where the mean vector $\mu \in \mathbb{R}^{n}$ and the positive definite covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. The components of the Gaussian random vector are Gaussian random variables, which are independent when Σ is diagonal matrix and are identically distributed when $\Sigma=\sigma^{2} I$.

1.3 Discrete random vectors

Definition 1.9 (Discrete random vectors). If a random vector $X: \Omega \rightarrow X_{1} \times \cdots \times X_{n} \subseteq \mathbb{R}^{n}$ takes countable values in \mathbb{R}^{n}, then it is called a discrete random vector. That is, the range of random vector X is countable, and the random vector is completely specified by the probability mass function

$$
P_{X}(x)=P\left(\cap_{i=1}^{n}\left\{X_{i}=x_{i}\right\}\right) \text { for all } x \in X_{1} \times \cdots \times X_{n}
$$

Remark 4. For an independent discrete random vector $X: \Omega \rightarrow \mathbb{R}^{n}$, we have $P_{X}(x)=\prod_{i=1}^{n} P_{X_{i}}\left(x_{i}\right)$ for each $x \in \mathbb{R}^{n}$.

Example 1.10 (Multiple coin tosses). For a probability space (Ω, \mathcal{F}, P), such that $\Omega=\{H, T\}^{n}, \mathcal{F}=$ $2^{\Omega}, P(\omega)=\frac{1}{2^{n}}$ for all $\omega \in \Omega$.

Consider the random vector $X: \Omega \rightarrow \mathbb{R}$ such that $X_{i}(\omega)=\mathbb{1}_{\left\{\omega_{i}=H\right\}}$ for each $i \in[n]$. Observe that X is a bijection from the sample space to the set $\{0,1\}^{n}$. In particular, X is a discrete random variable.

For any $x \in[0,1]^{n}$, we can write $N(x)=\sum_{i=1}^{n} \mathbb{1}_{\{[0,1)\}}(x)$. Further, we can write the joint distribution as

$$
F_{X}(x)= \begin{cases}1, & x_{i} \geqslant 1 \text { for all } i \in[n] \\ \frac{1}{2^{N(x)}}, & x_{i} \in[0,1] \text { for all } i \in[n] \\ 0, & x_{i}<0 \text { for some } i \in[n]\end{cases}
$$

We can derive the marginal distribution for i-th component as

$$
F_{X_{i}}\left(x_{i}\right)= \begin{cases}1, & x_{i} \geqslant 1 \\ \frac{1}{2}, & x_{i} \in[0,1) \\ 0, & x_{i}<0\end{cases}
$$

Therefore, it follows that X is an i.i.d. vector.

