
Lecture-05: Random Vectors

1 Random vectors

Definition 1.1 (Random vectors). Consider a probability space (Ω,F, P) and a finite n ∈N. A random
vector X : Ω→Rn is a mapping from sample space to an n-length real-valued vector, such that for x ∈Rn,
the event

A(x), {ω ∈Ω : X1(ω)6 x1, . . . , Xn(ω)6 xn} = ∩n
i=1X−1

i (−∞, xi] ∈ F.

We say that the random vector X is F-measurable and the probability of this event is denoted by

FX1,...,Xn(x1, . . . , xn) ≡ FX(x), P(A(x)) = P({X1 6 x1, . . . , Xn 6 xn}) = P(∩n
i=1X−1

i (−∞, xi]).

The function FX : Rn→ [0,1] is called the joint distribution function of a random vector X.

Definition 1.2 (Projection). For a vector x ∈Rn, we can define πi : Rn→R is the projection of an n-length
vector onto its i-th component, such that πi(x) = xi.

Remark 1. For any A ⊆R, we see that π−1
i (A) = R× · · · × A× · · · ×R.

Lemma 1.3 (Marginal distribution). Consider a random vector X : Ω → Rn defined on a probability space
(Ω,F, P) with the joint distribution FX : Rn → [0,1]. For each i ∈ [n], projection πi(X) of a random vector X
is a random variable Xi : Ω→R. The distribution of Xi is called the i-th marginal distribution and can be obtained
from the joint distribution as

FXi (xi) = lim
xj→∞, for all j 6=i

FX(x).

Proof. For each i ∈ [n] and xi ∈R, we can define sets Ai(xi), {Xi 6 xi} such that

Ai(xi) = X−1
i (−∞, xi] = X−1 ◦ π−1

i (−∞, xi] = X−1(R× · · · × (−∞, xi]× · · · ×R) = A(x) ∈ F,

where x = (∞, . . . , xi, . . . ,∞). It follows from the definition that Xi is a random variable, and the marginal
distribution is given by the expression in the Lemma statement.

Remark 2. For a random vector X : Ω→ Rn defined on the probability space (Ω,F, P) and any x ∈ Rn, the
event A(x) = ∩n

i=1 {Xi 6 xi} = ∩n
i=1 Ai(xi).

Lemma 1.4 (Properties of the joint distribution function). Then the joint distribution function FX : Rn→ [0,1]
satisfies the following properties.

(i) For x,y ∈Rn such that xi 6 yi for each i ∈ [n], we have FX(x)6 FX(y).

(ii) The function FX(x) is right continuous at all points x ∈Rn.

(iii) The lower limit is limxi→−∞ FX(x) = 0, and the upper limit is limxi→∞,i∈[n] FX(x) = 1.

Proof. Consider a random vector X : Ω→Rn defined on the probability space (Ω,F, P) and any x ∈Rn.

(i) We can verify that A(x) = ∩n
i=1 Ai(xi)⊆ ∩n

i=1 Ai(yi) = A(y). The result follows from the monotonicity
of probability measure.

(ii) The proof is similar to the proof for single random variable.
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(iii) The event A(x) = ∅ when xi = −∞ for some i ∈ [n] and A(x) = Ω when xi = ∞ for all i ∈ [n], hence
the result follow.

Example 1.5 (Probability of rectangular events). Consider a probability space (Ω,F, P) and a random
vector X : Ω→R2. Let events B1 , {x1 < X1 6 y1} = A1(y1) \ A1(x1) ∈ F and B2 , {x2 < X2 6 y2} =
A2(y2) \ A2(x2) ∈ F. The marginal probabilities are given by

P(B1) = P(A1(y1))− P(A1(x1)) = FX1(y1)− FX1(x1), P(B2) = P(A2(y2))− P(A2(x2)) = FX2(y2)− FX2(x2).

Then the probability of the rectangular event B1 ∩ B2 = (A(x2,y2) \ A(x1,y2)) \ (A(x2,y1) \ A(x1,y1)) ∈
F is

P(B1 ∩ B2) = (FX(x2,y2)− FX(x1,y2))− (FX(x2,y1)− FX(x1,y1)).

1.1 Independence of random variables

Definition 1.6 (Independent and identically distributed). A random vector X : Ω→ Rn defined on the
probability space (Ω,F, P) is called independent if

FX(x) =
n

∏
i=1

FXi (xi),

The random vector X is called identically distributed if each of its components have the identical marginal
distribution, i.e.

FXi = FX1 , for all i ∈ [n].

1.2 Continuous random vectors

Definition 1.7 (Joint density function). For jointly continuous random vector X : Ω → Rn with joint
distribution function FX : Rn → [0,1], there exists a joint density function fX : Rn → [0,∞) such that
fX(x) = dn

dx1 ...dxn
FX(x), and

FX(x) =
∫

u16x1

du1· · ·
∫

un6xn
dun fX(u1, . . . ,un).

Remark 3. For an independent continuous random vector X : Ω→Rn, we have fX(x) = ∏n
i=1 fXi (xi) for all

x ∈Rn.

Example 1.8 (Gaussian random vectors). For a probability space (Ω,F, P), Gaussian random vector is
a continuous random vector X : Ω→Rn defined by its density function

fX(x) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
for all x ∈Rn,

where the mean vector µ∈Rn and the positive definite covariance matrix Σ∈Rn×n. The components of
the Gaussian random vector are Gaussian random variables, which are independent when Σ is diagonal
matrix and are identically distributed when Σ = σ2 I.
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1.3 Discrete random vectors

Definition 1.9 (Discrete random vectors). If a random vector X : Ω→ X1 × · · · ×Xn ⊆Rn takes countable
values in Rn, then it is called a discrete random vector. That is, the range of random vector X is countable,
and the random vector is completely specified by the probability mass function

PX(x) = P(∩n
i=1 {Xi = xi}) for all x ∈ X1 × · · · ×Xn.

Remark 4. For an independent discrete random vector X : Ω→ Rn, we have PX(x) = ∏n
i=1 PXi (xi) for each

x ∈Rn.

Example 1.10 (Multiple coin tosses). For a probability space (Ω,F, P), such that Ω = {H, T}n ,F =

2Ω, P(ω) = 1
2n for all ω ∈Ω.

Consider the random vector X : Ω→R such that Xi(ω) = 1{ωi=H} for each i ∈ [n]. Observe that X
is a bijection from the sample space to the set {0,1}n. In particular, X is a discrete random variable.

For any x ∈ [0,1]n, we can write N(x) = ∑n
i=11{[0,1)}(x). Further, we can write the joint distribution

as

FX(x) =


1, xi > 1 for all i ∈ [n],

1
2N(x) , xi ∈ [0,1] for all i ∈ [n],
0, xi < 0 for some i ∈ [n].

We can derive the marginal distribution for i-th component as

FXi (xi) =


1, xi > 1,
1
2 , xi ∈ [0,1),
0, xi < 0.

Therefore, it follows that X is an i.i.d. vector.
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