
Lecture-06: Expectation

1 Expectation

Consider N trials of a random experiment, and a random variable X defined on this probability space.
Corresponding to the i-th outcome ωi ∈ Ω, there exists a number X(ωi). The empirical mean of random
variable X can be written as

m̂ =
1
N

N

∑
i=1

X(ωi).

If X ∈ X was a discrete random variable with probability mass function P, then the PMF can be estimated
for each x ∈ X as empirical PMF

P̂X(x) =
1
N

N

∑
i=1

1{X(ωi)=x}.

That is, we can write the empirical mean in terms of the empirical PMF as

m̂ =
1
N

N

∑
i=1

∑
x∈X

x1{X(ωi)=x} = ∑
x∈X

xP̂X(x).

This example motivates the following definition of mean for simple random variables.

Definition 1.1 (Expectation of simple random variable). Consider a discrete random variable X : Ω→X⊆
R taking finitely many values X and having PMF PX : X→ [0,1] is called a simple random variable. The
mean or expectation of a simple random variable X is denoted by E[X] and defined as

E[X], ∑
x∈X

xPX(x).

Remark 1. Recall that a simple random variable can be written as X = ∑x∈X x1{X=x}, where (Ax(ω) =

X−1 {x} : x ∈ X) is a partition of the sample space Ω and PX(x) = P(Ax). Hence, the expectation can be
written as an integral

E[X] =
∫

Ω
X(ω)P(dω) =

∫
Ω

∑
x∈X

x1{Ax}(ω)P(dω) = ∑
x∈X

x
∫

Ω
1{Ax}(ω)P(dω) = ∑

x∈X
xE[1{Ax}] = ∑

x∈X
xPX(x).

That is, the expectation of an indicator function is the probability of the indicated set.

Definition 1.2 (Expectation of a non-negative random variable). For a non-negative random variable X
defined on a probability space (Ω,F, P), there exists a sequence of non-decreasing simple random variables
(Xn : n ∈N) such that for all ω ∈Ω

Xn(ω)6 Xn+1(ω), for all n ∈N, and lim
n

Xn(ω) = X(ω).

Then E[Xn] is defined for each n ∈ N and (E[Xn] : n ∈ N) is a non-decreasing sequence, so the limit
limn E[Xn] ∈ R ∪ {∞} exists, and is independent of the choice of the sequence and depends only on the
probability space (Ω,F, P). The expectation of the non-negative random variable X is defined as

E[X], lim
n

E[Xn].
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Definition 1.3 (Expectation of a real random variable). For a real-valued random variable X defined on a
probability space (Ω,F, P), we can define the following functions

X+ , max{X,0} , X− , max{0,−X} .

We can verify that X+, X− are non-negative random variables and hence their expectations are well defined.
We observe that X(ω) = X+(ω)− X−(ω) for each ω ∈ Ω. If at least one of the E[X+] and E[X−] is finite,
then the expectation of the random variable X is defined as

E[X], E[X+]−E[X−].

Theorem 1.4 (Expectation as an integral with respect to the distribution function). For a random variable
X defined on the probability space (Ω,F, P), the expectation is given by

E[X] =
∫

R
xdFX(x).

Proof. It suffices to show this for a non-negative random variable X. We define simple random variables
(Xn : n ∈N) in the following fashion

Xn(ω),
22n−1

∑
k=0

k2−n
1{[k2−n ,(k+1)2−n)}(ω) =

{
k2−n, k2−n 6 X(ω) < (k + 1)2−n,k ∈

{
0, . . . ,22n − 1

}
,

0, X(ω)> 2n.

We observer that Xn is a quantized version of X, and its value is the left end-point k2−n when X ∈ [k2−n, (k+
1)2−n) for each k ∈

{
0, . . . ,22n − 1

}
. As n grows larger, we cover the non-negative real line and the step size

grows smaller. Thus, the limiting random variable X can take all possible non-negative real values. We see
that Xn(ω) 6 Xn+1(ω) and limn Xn(ω) = X(ω) for all ω ∈ Ω. Let FX(x−) = P{X < x}, then we can write
the expectation

E[Xn] =
22n−1

∑
k=0

k2−n[FX(((k + 1)2−n)−)− FX((k2−n)−)],

is completely specified by the distribution function FX . It follows that the expectation of the random vari-
able X is given by

E[X] = lim
n

E[Xn] = lim
n

1
2n

22n−1

∑
k=0

k2−n [FX((k2−n + 2−n)−)− FX((k2−n))−)]

2−n =
∫

R
xdFX(x).

1.1 Linearity of expectations

Theorem 1.5 (Linearity of expectations). Suppose X : Ω→ Rn is a random vector defined on the probability
space (Ω,F, P). Then, for constants αi ∈R for all i ∈ [n], we have

E[
n

∑
i=1

αiXi] =
n

∑
i=1

αiE[Xi].

Proof. It suffices to show that
∫

x∈Rn x1dFX(x) =
∫

x1∈R
x1dFX1(x1). The result follows from the observation

that ∫
x∈Rn

x1dFX(x) =
∫

x1∈R
x1

∫
x2,...,xn

dFX(x) =
∫

x1∈R
x1dFX1(x1).

1.2 Functions of random variables

Consider a random variable X : Ω→ R defined on the probability space (Ω,F, P). Suppose g : R→ R is
function such that g−1(−∞, x] ∈ B(R), then g(X) is a random variable.

2



Example 1.6 (Monotone function of random variables). Let g : R→ R be a monotonically increasing
function such that g−1(−∞, x] ∈B(R) for all x ∈R. Consider a random variable X : Ω→R defined on
the probability space (Ω,F, P), then Y , g(X) is a random variable with distribution function

FY(y) = P{g(X)6 y} = P
{

X 6 g−1(y)
}
= FX(g−1(y)).

Example 1.7 (Independence of function of random variables). Let g : R→ R and h : R→ R be func-
tions such that g−1(−∞, x] and h−1(−∞, x] are Borel sets for all x ∈ R. Consider independent random
variables X and Y defined on the probability space (Ω,F, P). Can you show that g(X) and h(Y) are
independent random variables?

Theorem 1.8 (Fundamental theorem of expectations). Suppose X is a random variable defined on the probability
space (Ω,F, P), and g : R→R is a function such that g−1(−∞, x] ∈ B(R) for all x ∈R. Then Y = g(X) is also a
random variable, and

E[Y] = E[g(X)].

Proof. It suffices to show this is true for simple random variables X : Ω→X⊆R. Let Ax , {ω ∈Ω : X(ω) = x}
for each x ∈ X. Then (Ax = X−1 {x} ∈ F : x ∈ X) partitions the sample space Ω, and we can write its expec-
tation as

E[X] = E[ ∑
x∈X

x1{Ax}] = ∑
x∈X

xPX(x).

It follows that Y : Ω→ Y= g(X) is also a discrete random variable, and we can write

By , {ω ∈Ω : (g ◦ X)(ω) = y} = ∪x∈X {X(ω) = x, g(x) = y} = ∪x∈g−1{y}Ax.

Therefore, we can write the expectation

E[Y] = E[ ∑
y∈Y

y1By ] = E[ ∑
y∈Y

y ∑
x∈g−1{y}

1Ax ] = E[ ∑
x∈X

g(x)1Ax ] = ∑
x∈X

g(x)PX(x).

A Indicator functions

For a sequence of disjoint events (An ∈ F : n ∈N), we have

1{∪n∈N An} = ∑
n∈N

1An .

For any sequence of events (An ∈ F : n ∈N), we have

1{∩n∈N An} = ∏
n∈N

1An .

A.1 Law of total probability

Let (An ∈ F : n ∈N) be a partition of the sample space, i.e. An ∩ Am = ∅ for n 6= m and ∪n∈N An = Ω. Then,
any event B = B ∩Ω = B ∩ (∪n∈N An) = ∪n∈N(B ∩ An). Therefore, we can write

1B = ∑
n∈N

1B∩An .
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