
Lecture-07: Moments

1 Properties of Expectations

Theorem 1.1 (Properties). Let X : Ω→R be a random variable defined on the probability space (Ω,F, P).

(i) Linearity: Let a,b ∈ R and X,Y be random variables defined on the probability space (Ω,F, P). If EX,EY,
and aEX + bEY are well defined, then E(aX + bY) is well defined and

E(aX + bY) = aEX + bEY.

(ii) Monotonicity: If P{X > Y} = 1 and E[Y] is well defined with E[Y] > −∞, then E[X] is well defined and
E[X]> E[Y].

(iii) Functions of random variables: Let g : R→ R be a Borel measurable function, then g(X) is a random
variable with E[g(X)] =

∫
x∈R

g(x)dF(x).

(iv) Continuous random variables: Let fX : R→ [0,∞) be the density function, then EX =
∫

x∈R
x fX(x)dx.

(v) Discrete random variables: Let pX : X→ [0,1] be the probability mass function, then EX = ∑x∈X xpX(x).

(vi) Integration by parts: The expectation EX =
∫

x>0(1− FX(x))dx +
∫

x<0 FX(x)dx is well defined when at
least one of the two parts is finite on the right hand side.

Proof. It suffices to show properties (i)− (iii) for simple random variables.

(i) Let X = ∑x∈X x1Ax and Y = ∑y∈Y y1By be simple random variables, then (Ax ∩ By ∈ F : (x,y ∈X× Y))

partition the sample space Ω. Hence, we can write aX + bY = ∑(x,y)∈X×Y(ax + by)1{Ax∩By} and from
linearity of sum it follows that

E[aX + bY] = ∑
(x,y)∈X×Y

(ax + by)P
{

Ax ∩ By
}
= a ∑

(x,y)∈X×Y
xP
{

Ax ∩ By
}
+ b ∑

(x,y)∈X×Y
yP
{

Ax ∩ By
}

= a ∑
x∈X

xP(Ax) + b ∑
y∈Y

yP(By) = aEX + bEY.

(ii) From the fact that X−Y > 0 almost surely and linearity of expectation, it suffices to show that EX > 0
for non-negative random variable X.

(iii) It suffices to show this holds true for simple random variables X : Ω→ X ⊂ R. Since G : R→ R is
Borel measurable, Y = g(X) is a random variable. For each y ∈ Y= g(X), we have

By = {ω ∈Ω : (g ◦ X)(ω) = y} = X−1 ◦ g−1 {y} = ∪g−1{y}Ax.

Therefore, we can write the expectation

E[Y] = ∑
y∈Y

yP(By) = ∑
y∈Y

∑
x∈g−1(y)

g(x)P(Ax) = ∑
x∈X

g(x)P(Ax).

(iv) For continuous random variables, we have dFX(x) = fX(x)dx for all x ∈R.

(v) For discrete random variables X : Ω→ X, we have dFX(x) = pX(x) for all x ∈ X and zero otherwise.

1



(vi) We can write EX = −
∫

x>0 xd(1− FX)(x) +
∫

x<0 xdFX(x). Therefore, we have

= −x(1− FX(x))|∞0 +
∫

x>0
(1− FX(x))dx

2 Moments

Example 2.1 (Absolute value function). For the function |·| : R→R+, we can compute the inverse of
half open sets (−∞, x] for any x ∈R, as

g−1(−∞, x] =

{
∅, x < 0,
[−x, x], x > 0.

Since g−1(−∞, x] ∈ B(R), it follows that |·| : R→R+ is a Borel measurable function.

Lemma 2.2. If E |X| is finite, then EX exists and is finite.

Proof. The function |·| : R→R is a Borel measurable function and hence |X| is a random variable. Further
|X| > 0, and hence the expectation E |X| always exists. If E |X| is finite, it means EX+ and EX− are both
finite, and hence EX = EX−EX− is finite as well.

Corollary 2.3. Let g : R→R be a Borel measurable function. If E |g(X)| is finite, then Eg(X) exists and is finite.

Exercise 2.4 (Polynomial function). For any k∈N, we define functions gk : R→R such that gk : x 7→ xk.
Show that gk is Borel measurable.

Definition 2.5 (Moments). Let X : Ω→R be a random variable defined on the probability space (Ω,F, P).
We define the kth moment of the random variable X as mk , Egk(X) = EXk. First moment EX is called the
mean of the random variable.

Remark 1. If E |X|k is finite, then mk exists and is finite.

Example 2.6 (Moments). If |X| 6 1, then |X|k 6 1 almost surely. Therefore, by the monotonicity of
expectations E |X|k 6 1, and the moments mk exist and are finite for all k ∈N.

Lemma 2.7. If mN is finite for some N ∈N, then mk is finite for all k ∈ [N].

Proof. For any random variable X : Ω→R and k ∈ [N], we can write

|X|k = |X|k1{|X|k61
} + |X|k1{|X|k>1

} 6 1{|X|k61
} + |X|N 1{|X|k>1

} 6 1 + |X|N .

The result follows from the monotonicity of expectations.

Exercise 2.8 (Polynomials). For any k ∈N, we define functions hk : R→R such that hk : x 7→ (x−m)k.
Show that hk is Borel measurable.
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Definition 2.9 (Central moments). Let X : Ω→ R be a random variable defined on the probability space
(Ω,F, P) with finite first moment m1. We define the kth central moment of the random variable X as
σk , Ehk(X) = E(X − m1)

k. The second central moment σ2 = E(X − m1)
2 is called the variance of the

random variable and denoted by σ2.

Lemma 2.10. The first central moment σ1 = E(X − m1) = 0 and the variance σ2 = E(X − m1)
2 for a random

variable X is always non-negative, with equality when X is a constant. That is, m2 > m2
1 with equality when X is a

constant.

Proof. Recall that h1, h2 are Boreal measurable functions, and hence h1(X) = X−m1 and h2(X) = (X−m1)
2

are random variables. From the linearity of expectations, it follows that σ1 = Eh1(X) = EX−m1 = 0. Since
(X−m1)

2 > 0 almost surely, it follows from the monotonicity of expectation that 0 6 E(X−m1)
2. From the

linearity of expectation and expansion of (X−m1)
2, we get σ2 =EX2− 2m1EX +m− 12 = m2−m2

1 > 0.

Remark 2. If second moment is finite, then the first moment is finite.

Theorem 2.11 (Markov’s inequality). Let X : Ω → R be a random variable defined on the probability space
(Ω,F, P). Then, for any monotonically non-decreasing function f : R→R+, we have

P{X > ε}6 E[ f (X)]

f (ε)
.

Proof. We can verify that any monotonically increasing function f : R→ R+ is Borel measurable. Hence,
f (X) is a random variable for any random variable X. Therefore,

f (X) = f (X)1{ f (X)> f (ε)} + f (X)1{ f (X)< f (ε)} > f (ε)1{X>ε}.

The result follows from the monotonicity of expectations.

Corollary 2.12 (Markov). Let X be a non-negative random variable, then P{X > x}6 EX
x for all x > 0.

Corollary 2.13 (Chebychev). Let X be a random variable with finite mean µ and variance σ2, then P{|X− µ| > x}6
Var X

x2 for all x > 0.

Proof. Apply the Markov’s inequality for random variable Y = |X− µ|> 0 and increasing function f (x) =
x2 for x > 0.

Corollary 2.14 (Chernoff). Let X be a random variable with finite E[eθX ] for some θ > 0, then P{X > x} 6
e−θxE[eθX ] for all x > 0.

Proof. Apply the Markov’s inequality for random variable X and increasing function f (x) = eθx > 0 for
θ > 0.
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