Lecture-07: Moments

1 Properties of Expectations

Theorem 1.1 (Properties). Let $X : \Omega \to \mathbb{R}$ be a random variable defined on the probability space (Ω, \mathcal{F}, P) .

(*i*) *Linearity:* Let $a, b \in \mathbb{R}$ and X, Y be random variables defined on the probability space (Ω, \mathcal{F}, P) . If $\mathbb{E}X, \mathbb{E}Y$, and $a\mathbb{E}X + b\mathbb{E}Y$ are well defined, then $\mathbb{E}(aX + bY)$ is well defined and

$$\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y.$$

- (*ii*) *Monotonicity:* If $P\{X \ge Y\} = 1$ and $\mathbb{E}[Y]$ is well defined with $\mathbb{E}[Y] > -\infty$, then $\mathbb{E}[X]$ is well defined and $\mathbb{E}[X] \ge \mathbb{E}[Y]$.
- (iii) Functions of random variables: Let $g : \mathbb{R} \to \mathbb{R}$ be a Borel measurable function, then g(X) is a random variable with $\mathbb{E}[g(X)] = \int_{x \in \mathbb{R}} g(x) dF(x)$.
- (iv) **Continuous random variables:** Let $f_X : \mathbb{R} \to [0, \infty)$ be the density function, then $\mathbb{E}X = \int_{x \in \mathbb{R}} x f_X(x) dx$.
- (v) **Discrete random variables:** Let $p_X : \mathcal{X} \to [0,1]$ be the probability mass function, then $\mathbb{E}X = \sum_{x \in \mathcal{X}} x p_X(x)$.
- (vi) **Integration by parts:** The expectation $\mathbb{E}X = \int_{x \ge 0} (1 F_X(x)) dx + \int_{x < 0} F_X(x) dx$ is well defined when at least one of the two parts is finite on the right hand side.

Proof. It suffices to show properties (i) - (iii) for simple random variables.

(i) Let $X = \sum_{x \in \mathcal{X}} x \mathbb{1}_{A_x}$ and $Y = \sum_{y \in \mathcal{Y}} y \mathbb{1}_{B_y}$ be simple random variables, then $(A_x \cap B_y \in \mathcal{F} : (x, y \in \mathcal{X} \times \mathcal{Y}))$ partition the sample space Ω . Hence, we can write $aX + bY = \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} (ax + by) \mathbb{1}_{\{A_x \cap B_y\}}$ and from linearity of sum it follows that

$$\mathbb{E}[aX+bY] = \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} (ax+by)P\{A_x\cap B_y\} = a\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} xP\{A_x\cap B_y\} + b\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} yP\{A_x\cap B_y\}$$
$$= a\sum_{x\in\mathcal{X}} xP(A_x) + b\sum_{y\in\mathcal{Y}} yP(B_y) = a\mathbb{E}X + b\mathbb{E}Y.$$

- (ii) From the fact that $X Y \ge 0$ almost surely and linearity of expectation, it suffices to show that $\mathbb{E}X \ge 0$ for non-negative random variable *X*.
- (iii) It suffices to show this holds true for simple random variables $X : \Omega \to \mathfrak{X} \subset \mathbb{R}$. Since $G : \mathbb{R} \to \mathbb{R}$ is Borel measurable, Y = g(X) is a random variable. For each $y \in \mathcal{Y} = g(\mathcal{X})$, we have

$$B_y = \{\omega \in \Omega : (g \circ X)(\omega) = y\} = X^{-1} \circ g^{-1}\{y\} = \bigcup_{g^{-1}\{y\}} A_x$$

Therefore, we can write the expectation

$$\mathbb{E}[Y] = \sum_{y \in \mathcal{Y}} y P(B_y) = \sum_{y \in \mathcal{Y}} \sum_{x \in g^{-1}(y)} g(x) P(A_x) = \sum_{x \in \mathcal{X}} g(x) P(A_x).$$

- (iv) For continuous random variables, we have $dF_X(x) = f_X(x)dx$ for all $x \in \mathbb{R}$.
- (v) For discrete random variables $X : \Omega \to \mathcal{X}$, we have $dF_X(x) = p_X(x)$ for all $x \in \mathcal{X}$ and zero otherwise.

(vi) We can write $\mathbb{E}X = -\int_{x \ge 0} x d(1 - F_X)(x) + \int_{x < 0} x dF_X(x)$. Therefore, we have

$$= -x(1 - F_X(x))|_0^{\infty} + \int_{x \ge 0} (1 - F_X(x)) dx$$

2 Moments

Example 2.1 (Absolute value function). For the function $|\cdot| : \mathbb{R} \to \mathbb{R}_+$, we can compute the inverse of half open sets $(-\infty, x]$ for any $x \in \mathbb{R}$, as

$$g^{-1}(-\infty,x] = \begin{cases} \emptyset, & x < 0, \\ [-x,x], & x \ge 0. \end{cases}$$

Since $g^{-1}(-\infty, x] \in \mathcal{B}(R)$, it follows that $|\cdot| : \mathbb{R} \to \mathbb{R}_+$ is a Borel measurable function.

Lemma 2.2. *If* $\mathbb{E} |X|$ *is finite, then* $\mathbb{E} X$ *exists and is finite.*

Proof. The function $|\cdot| : \mathbb{R} \to \mathbb{R}$ is a Borel measurable function and hence |X| is a random variable. Further $|X| \ge 0$, and hence the expectation $\mathbb{E}|X|$ always exists. If $\mathbb{E}|X|$ is finite, it means $\mathbb{E}X_+$ and $\mathbb{E}X_-$ are both finite, and hence $\mathbb{E}X = \mathbb{E}X - \mathbb{E}X_-$ is finite as well.

Corollary 2.3. Let $g : \mathbb{R} \to \mathbb{R}$ be a Borel measurable function. If $\mathbb{E} |g(X)|$ is finite, then $\mathbb{E}g(X)$ exists and is finite.

Exercise 2.4 (Polynomial function). For any $k \in \mathbb{N}$, we define functions $g_k : \mathbb{R} \to \mathbb{R}$ such that $g_k : x \mapsto x^k$. Show that g_k is Borel measurable.

Definition 2.5 (Moments). Let $X : \Omega \to \mathbb{R}$ be a random variable defined on the probability space (Ω, \mathcal{F}, P) . We define the *k*th **moment** of the random variable *X* as $m_k \triangleq \mathbb{E}g_k(X) = \mathbb{E}X^k$. First moment $\mathbb{E}X$ is called the **mean** of the random variable.

Remark 1. If $\mathbb{E} |X|^k$ is finite, then m_k exists and is finite.

Example 2.6 (Moments). If $|X| \leq 1$, then $|X|^k \leq 1$ almost surely. Therefore, by the monotonicity of expectations $\mathbb{E} |X|^k \leq 1$, and the moments m_k exist and are finite for all $k \in \mathbb{N}$.

Lemma 2.7. If m_N is finite for some $N \in \mathbb{N}$, then m_k is finite for all $k \in [N]$.

Proof. For any random variable $X : \Omega \to \mathbb{R}$ and $k \in [N]$, we can write

$$|X|^{k} = |X|^{k} \mathbb{1}_{\left\{|X|^{k} \leq 1\right\}} + |X|^{k} \mathbb{1}_{\left\{|X|^{k} > 1\right\}} \leq \mathbb{1}_{\left\{|X|^{k} \leq 1\right\}} + |X|^{N} \mathbb{1}_{\left\{|X|^{k} > 1\right\}} \leq 1 + |X|^{N}.$$

The result follows from the monotonicity of expectations.

Exercise 2.8 (Polynomials). For any $k \in \mathbb{N}$, we define functions $h_k : \mathbb{R} \to \mathbb{R}$ such that $h_k : x \mapsto (x - m)^k$. Show that h_k is Borel measurable.

Definition 2.9 (Central moments). Let $X : \Omega \to \mathbb{R}$ be a random variable defined on the probability space (Ω, \mathcal{F}, P) with finite first moment m_1 . We define the *k*th **central moment** of the random variable *X* as $\sigma_k \triangleq \mathbb{E}h_k(X) = \mathbb{E}(X - m_1)^k$. The second central moment $\sigma_2 = \mathbb{E}(X - m_1)^2$ is called the **variance** of the random variable and denoted by σ^2 .

Lemma 2.10. The first central moment $\sigma_1 = \mathbb{E}(X - m_1) = 0$ and the variance $\sigma^2 = \mathbb{E}(X - m_1)^2$ for a random variable X is always non-negative, with equality when X is a constant. That is, $m_2 \ge m_1^2$ with equality when X is a constant.

Proof. Recall that h_1, h_2 are Boreal measurable functions, and hence $h_1(X) = X - m_1$ and $h_2(X) = (X - m_1)^2$ are random variables. From the linearity of expectations, it follows that $\sigma_1 = \mathbb{E}h_1(X) = \mathbb{E}X - m_1 = 0$. Since $(X - m_1)^2 \ge 0$ almost surely, it follows from the monotonicity of expectation that $0 \le \mathbb{E}(X - m_1)^2$. From the linearity of expectation and expansion of $(X - m_1)^2$, we get $\sigma^2 = \mathbb{E}X^2 - 2m_1\mathbb{E}X + m - 1^2 = m_2 - m_1^2 \ge 0$. \Box

Remark 2. If second moment is finite, then the first moment is finite.

Theorem 2.11 (Markov's inequality). Let $X : \Omega \to \mathbb{R}$ be a random variable defined on the probability space (Ω, \mathcal{F}, P) . Then, for any monotonically non-decreasing function $f : \mathbb{R} \to \mathbb{R}_+$, we have

$$P\{X \ge \epsilon\} \leqslant \frac{\mathbb{E}[f(X)]}{f(\epsilon)}$$

Proof. We can verify that any monotonically increasing function $f : \mathbb{R} \to \mathbb{R}_+$ is Borel measurable. Hence, f(X) is a random variable for any random variable X. Therefore,

$$f(X) = f(X) \mathbb{1}_{\{f(X) \ge f(\epsilon)\}} + f(X) \mathbb{1}_{\{f(X) < f(\epsilon)\}} \ge f(\epsilon) \mathbb{1}_{\{X \ge \epsilon\}}$$

The result follows from the monotonicity of expectations.

Corollary 2.12 (Markov). Let X be a non-negative random variable, then $P\{X > x\} \leq \frac{\mathbb{E}X}{x}$ for all x > 0.

Corollary 2.13 (Chebychev). Let X be a random variable with finite mean μ and variance σ^2 , then $P\{|X - \mu| > x\} \leq \frac{\operatorname{Var} X}{r^2}$ for all x > 0.

Proof. Apply the Markov's inequality for random variable $Y = |X - \mu| \ge 0$ and increasing function $f(x) = x^2$ for $x \ge 0$.

Corollary 2.14 (Chernoff). Let X be a random variable with finite $\mathbb{E}[e^{\theta X}]$ for some $\theta > 0$, then $P\{X > x\} \leq e^{-\theta x} \mathbb{E}[e^{\theta X}]$ for all x > 0.

Proof. Apply the Markov's inequality for random variable *X* and increasing function $f(x) = e^{\theta x} > 0$ for $\theta > 0$.