
Lecture-08: Correlation

1 Correlation and covariance

Exercise 1.1. Show that the function g : R2→R defined by g : (x,y) 7→ xy is a Borel measurable function.

Definition 1.2 (Correlation). For two random variables X,Y defined on the same probability space, the cor-
relation between these two random variables is defined as E[XY]. If E[XY] = E[X]E[Y], then the random
variables X,Y are called uncorrelated.

Lemma 1.3. If X,Y are independent random variables, then they are uncorrelated.

Proof. It suffices to show for X,Y simple and independent random variables. We can write X = ∑x∈X x1Ax
and Y = ∑y∈Y y1By . Therefore,

E[XY] = ∑
(x,y)∈X×Y

xyP
{

Ax ∩ By
}
= ∑

x∈X
xP(Ax) ∑

y∈Y
yP(By) = E[X]E[Y].

Proof. If X,Y are independent random variables, then the joint distribution FX,Y(x,y) = FX(x)FY(y) for all
(x,y) ∈R2. Therefore,

E[XY] =
∫
(x,y)∈R2

xydFX,Y(x,y) =
∫

x∈R
xdFX(x)

∫
y∈R

ydFY(y) = E[X]E[Y].

Example 1.4 (Uncorrelated dependent random variables). Let X : Ω→ R be a zero mean continuous
random variable and g : R→ R to be an even Borel measurable function, increasing for y ∈ R+. Then
Y = g(X) is a random variable, and we can verify that X,Y are uncorrelated and dependent random
variables.

To show dependence of X and Y, we take positive x,y such that x > xy = g−1(y) and FX(x) < 1.
Then, we can write the set By = {Y 6 y} = {g(X)6 y} =

{
−xy 6 X 6 xy

}
. Hence, we can write the

joint distribution at (x,y) as

FX,Y(x,y) = P{X 6 x,Y 6 y} = P(Ax ∩ By) = P(By) = FY(y) 6= FX(x)FY(y).

Since the function g is even, it follows that xg(x) is an odd function, and hence we have

E[Xg(X)] = E[Xg(X)1{X>0}] + E[Xg(−X)1{X<0}] = E[Xg(X)1{X>0}]−E[−Xg(−X)1{−X>0}] = 0.

Theorem 1.5 (AM greater than GM). For any two random variables X,Y, the correlation is upper bounded by the
average of the second moments, with equality iff X = Y almost surely. That is,

E[XY]6
1
2
(EX2 + EY2).
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Proof. This follows from the linearity and monotonicity of expectations and the fact that (X−Y)2 > 0 with
equality iff X = Y.

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X,Y, the correlation of absolute values
of X and Y is upper bounded by the square root of product of second moments, with equality iff X = αY for any
constant α ∈R. That is,

E |XY|6
√

EX2EY2.

Proof. For two random variables X and Y, we can define normalized random variables W , |X|√
EX2 and

Z , |Y|√
EY2 , to get the result.

Definition 1.7 (Convex function). A real-valued function f : R→R is convex if for all x,y∈R and θ ∈ [0,1],
we have

f (θx + (1− θ)y)6 θ f (x) + (1− θ) f (y).

Theorem 1.8 (Jensen’s inequality). For any convex function f : R→R and random variable X, we have

f (EX)6 E f (X).

Proof. It suffices to show this for simple random variables X : Ω→ X. We show this by induction on cardi-
nality of alphabet X. The inequality is trivially true for |X| = 1. We assume that the inductive hypothesis is
true for |X| = n.

Let X ∈ X, where |X| = n + 1. We can denote X = {x1, . . . , xn+1} with pi , P{X = xi} for all i ∈ [n + 1].
We observe that (

pj
1−p1

: j> 2) is a probability mass function for some random variable Y ∈ Y= {x2, . . . , xn+1}
with cardinality n. Hence, by inductive hypothesis, we have

f

(
n+1

∑
i=2

pi
1− p1

xi

)
6

n+1

∑
i=2

pi
1− p1

f (xi).

Next, we consider a random variable Z ∈
{

x1, 1
1−p1

∑n+1
i=2 pixi

}
with probability mass function (p1,1− p1).

From the convexity of f and the inductive step, we can write

f (EX) = f (
n+1

∑
i=1

pixi) = f

(
p1x1 + (1− p1)

n+1

∑
i=2

pi
1− p1

xi

)
6

n+1

∑
i=1

pi f (xi) = E f (X).

Theorem 1.9 (Hölder’s inequality). Consider two random variables X,Y such that E |X|p and E |Y|q are finite
for p,q > 1 such that 1

p + 1
q = 1. Then,

E |XY|6 (E |X|p)
1
p (E |Y|q)

1
q .

Proof. Recall that f (x) = ex is a convex function. Therefore, for random variable Z ∈ {lnV, lnW} with PMF
( 1

p , 1
q ), it follows from Jensen’s inequality that

VW = eln(VW) 6
ep lnV

p
+

ep lnW

p
=

Vp

p
+

Wq

q
.

Taking absolute value and then expectation on both sides, we get

E |VW|6 E |V|p

p
+

E |W|q

q
.

Taking V , |X|

(E|X|p)
1
p

and W , |Y|

(E|Y|q)
1
q

, we get the result.
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Definition 1.10 (Covariance). For two random variables X,Y defined on the same probability space, the
covariance between these two random variables is defined as cov(X,Y), E(X−EX)(Y−EY).

Lemma 1.11. If the random variables X,Y are called uncorrelated, then the covariance is zero.

Proof. We can write the covariance of uncorrelated random variables X,Y as

cov(X,Y) = E(X−EX)(Y−EY) = EXY− (EX)(EY) = 0.

Lemma 1.12. Let X : Ω→Rn be an uncorrelated random vector and a = (a1, . . . , an) ∈Rn, then

Var

(
n

∑
i=1

aiXi

)
=

n

∑
i=1

a2
i Var (Xi) .

Proof. From the linearity of expectation, we can write the variance of the linear combination as

E

(
n

∑
i=1

ai(Xi −EXi)

)2

=
n

∑
i=1

a2
i Var Xi + ∑

i 6=j
cov(Xi, Xj).

Definition 1.13 (Correlation coefficient). The ratio of covariance of two random variables X,Y and the
square root of product of their variances is called the correlation coefficient and denoted by

ρX,Y ,
cov(X,Y)√

Var(X),Var(Y)
.

Theorem 1.14 (Correlation coefficient). For any two random variables X,Y, the absolute value of correlation

coefficient is less than or equal to unity, with equality iff X = αY + β almost surely for constants α =
√

Var(X)
Var(Y) and

β = EX− αEY.

Proof. For two random variables X and Y, we can define normalized random variables W , X−EX√
Var(X)

and

Z , Y−EY√
Var(Y)

. Applying the AM-GM inequality to random variables W, Z, we get

|cov(X,Y)|6
√

Var(X)Var(Y).

Recall that equality is achieved iff W = Z almost surely or equivalently iff X = αY + β almost surely. Taking
U = −Y, we see that −cov(X,Y)6

√
Var(X)Var(Y), and hence the result follows.

2 Characteristic function

Definition 2.1 (Characteristic function). For a random variable X, the characteristic function ΦX is defined
by ΦX(u), EejuX , where j =

√
−1.

Theorem 2.2. Two random variables have the same probability distribution iff they have the same probability distri-
bution.

Proof. It is easy to see the necessity and the sufficiency is difficult.

Lemma 2.3. If E[Xk] exists and is finite for an integer k ∈N, then the derivatives of ΦX up to order k exist and are
continuous, and Φ(k)

X (0) = jkE[Xk].

Definition 2.4. For a non-negative integer-valued random variable X it is often more convenient to work
with the z-transform of the PMF, defined by ΨX(z) = EzX = ∑k>0 zk pX(k), for real or complex z with |z|6 1.
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Theorem 2.5. Two non-negative integer-valued random variables have the same probability distribution iff their
z-transforms are equal. If E[Xk] is finite it can be found from the derivatives of ΨX up to the kth order at z = 1,
Ψ(k)

X (1) = E[X(X− 1) . . . (X− k + 1)].

Proof. The necessity is clear. For sufficiency, we see that Ψ(k)
X (0) = k!pX(k). Further, interchanging the

derivative and the summation (by dominated convergence theorem), we get the second result.
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