Lecture-08: Correlation

1 Correlation and covariance

Exercise 1.1. Show that the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $g:(x, y) \mapsto x y$ is a Borel measurable function.

Definition 1.2 (Correlation). For two random variables X, Y defined on the same probability space, the correlation between these two random variables is defined as $\mathbb{E}[X Y]$. If $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$, then the random variables X, Y are called uncorrelated.
Lemma 1.3. If X, Y are independent random variables, then they are uncorrelated.
Proof. It suffices to show for X, Y simple and independent random variables. We can write $X=\sum_{x \in x} x \mathbb{1}_{A_{x}}$ and $Y=\sum_{y \in y} y \mathbb{1}_{B y}$. Therefore,

$$
\mathbb{E}[X Y]=\sum_{(x, y) \in X \times y} x y P\left\{A_{x} \cap B_{y}\right\}=\sum_{x \in X} x P\left(A_{x}\right) \sum_{y \in y} y P\left(B_{y}\right)=\mathbb{E}[X] \mathbb{E}[Y] .
$$

Proof. If X, Y are independent random variables, then the joint distribution $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all $(x, y) \in \mathbb{R}^{2}$. Therefore,

$$
\mathbb{E}[X Y]=\int_{(x, y) \in \mathbb{R}^{2}} x y d F_{X, Y}(x, y)=\int_{x \in \mathbb{R}} x d F_{X}(x) \int_{y \in \mathbb{R}} y d F_{Y}(y)=\mathbb{E}[X] \mathbb{E}[Y] .
$$

Example 1.4 (Uncorrelated dependent random variables). Let $X: \Omega \rightarrow \mathbb{R}$ be a zero mean continuous random variable and $g: \mathbb{R} \rightarrow \mathbb{R}$ to be an even Borel measurable function, increasing for $y \in \mathbb{R}_{+}$. Then $Y=g(X)$ is a random variable, and we can verify that X, Y are uncorrelated and dependent random variables.

To show dependence of X and Y, we take positive x, y such that $x>x_{y}=g^{-1}(y)$ and $F_{X}(x)<1$. Then, we can write the set $B_{y}=\{Y \leqslant y\}=\{g(X) \leqslant y\}=\left\{-x_{y} \leqslant X \leqslant x_{y}\right\}$. Hence, we can write the joint distribution at (x, y) as

$$
F_{X, Y}(x, y)=P\{X \leqslant x, Y \leqslant y\}=P\left(A_{x} \cap B_{y}\right)=P\left(B_{y}\right)=F_{Y}(y) \neq F_{X}(x) F_{Y}(y) .
$$

Since the function g is even, it follows that $\operatorname{xg}(x)$ is an odd function, and hence we have

$$
\mathbb{E}[X g(X)]=\mathbb{E}\left[X g(X) \mathbb{1}_{\{X>0\}}\right]+\mathbb{E}\left[X g(-X) \mathbb{1}_{\{X<0\}}\right]=\mathbb{E}\left[X g(X) \mathbb{1}_{\{X>0\}}\right]-\mathbb{E}\left[-X g(-X) \mathbb{1}_{\{-X>0\}}\right]=0 .
$$

Theorem 1.5 (AM greater than GM). For any two random variables X, Y, the correlation is upper bounded by the average of the second moments, with equality iff $X=Y$ almost surely. That is,

$$
\mathbb{E}[X Y] \leqslant \frac{1}{2}\left(\mathbb{E} X^{2}+\mathbb{E} Y^{2}\right) .
$$

Proof. This follows from the linearity and monotonicity of expectations and the fact that $(X-Y)^{2} \geqslant 0$ with equality iff $X=Y$.

Theorem 1.6 (Cauchy-Schwarz inequality). For any two random variables X, Y, the correlation of absolute values of X and Y is upper bounded by the square root of product of second moments, with equality iff $X=\alpha Y$ for any constant $\alpha \in \mathbb{R}$. That is,

$$
\mathbb{E}|X Y| \leqslant \sqrt{\mathbb{E} X^{2} \mathbb{E} Y^{2}}
$$

Proof. For two random variables X and Y, we can define normalized random variables $W \triangleq \frac{|X|}{\sqrt{\mathbb{E} X^{2}}}$ and $Z \triangleq \frac{|Y|}{\sqrt{\mathbb{E} Y^{2}}}$, to get the result.

Definition 1.7 (Convex function). A real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for all $x, y \in \mathbb{R}$ and $\theta \in[0,1]$, we have

$$
f(\theta x+(1-\theta) y) \leqslant \theta f(x)+(1-\theta) f(y)
$$

Theorem 1.8 (Jensen's inequality). For any convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ and random variable X, we have

$$
f(\mathbb{E} X) \leqslant \mathbb{E} f(X)
$$

Proof. It suffices to show this for simple random variables $X: \Omega \rightarrow X$. We show this by induction on cardinality of alphabet X. The inequality is trivially true for $|X|=1$. We assume that the inductive hypothesis is true for $|X|=n$.

Let $X \in X$, where $|X|=n+1$. We can denote $X=\left\{x_{1}, \ldots, x_{n+1}\right\}$ with $p_{i} \triangleq P\left\{X=x_{i}\right\}$ for all $i \in[n+1]$. We observe that $\left(\frac{p_{j}}{1-p_{1}}: j \geqslant 2\right)$ is a probability mass function for some random variable $Y \in \mathcal{Y}=\left\{x_{2}, \ldots, x_{n+1}\right\}$ with cardinality n. Hence, by inductive hypothesis, we have

$$
f\left(\sum_{i=2}^{n+1} \frac{p_{i}}{1-p_{1}} x_{i}\right) \leqslant \sum_{i=2}^{n+1} \frac{p_{i}}{1-p_{1}} f\left(x_{i}\right)
$$

Next, we consider a random variable $Z \in\left\{x_{1}, \frac{1}{1-p_{1}} \sum_{i=2}^{n+1} p_{i} x_{i}\right\}$ with probability mass function $\left(p_{1}, 1-p_{1}\right)$. From the convexity of f and the inductive step, we can write

$$
f(\mathbb{E} X)=f\left(\sum_{i=1}^{n+1} p_{i} x_{i}\right)=f\left(p_{1} x_{1}+\left(1-p_{1}\right) \sum_{i=2}^{n+1} \frac{p_{i}}{1-p_{1}} x_{i}\right) \leqslant \sum_{i=1}^{n+1} p_{i} f\left(x_{i}\right)=\mathbb{E} f(X)
$$

Theorem 1.9 (Hölder's inequality). Consider two random variables X, Y such that $\mathbb{E}|X|^{p}$ and $\mathbb{E}|Y|^{q}$ are finite for $p, q \geqslant 1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then,

$$
\mathbb{E}|X Y| \leqslant\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}}\left(\mathbb{E}|Y|^{q}\right)^{\frac{1}{q}}
$$

Proof. Recall that $f(x)=e^{x}$ is a convex function. Therefore, for random variable $Z \in\{\ln V, \ln W\}$ with PMF $\left(\frac{1}{p}, \frac{1}{q}\right)$, it follows from Jensen's inequality that

$$
V W=e^{\ln (V W)} \leqslant \frac{e^{p \ln V}}{p}+\frac{e^{p \ln W}}{p}=\frac{V^{p}}{p}+\frac{W^{q}}{q} .
$$

Taking absolute value and then expectation on both sides, we get

$$
\mathbb{E}|V W| \leqslant \frac{\mathbb{E}|V|^{p}}{p}+\frac{\mathbb{E}|W|^{q}}{q}
$$

Taking $V \triangleq \frac{|X|}{\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}}}$ and $W \triangleq \frac{|Y|}{\left(\mathbb{E}|Y|^{q}\right)^{\frac{1}{q}}}$, we get the result.

Definition 1.10 (Covariance). For two random variables X, Y defined on the same probability space, the covariance between these two random variables is defined as $\operatorname{cov}(X, Y) \triangleq \mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)$.

Lemma 1.11. If the random variables X, Y are called uncorrelated, then the covariance is zero.
Proof. We can write the covariance of uncorrelated random variables X, Y as

$$
\operatorname{cov}(X, Y)=\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)=\mathbb{E} X Y-(\mathbb{E} X)(\mathbb{E} Y)=0
$$

Lemma 1.12. Let $X: \Omega \rightarrow \mathbb{R}^{n}$ be an uncorrelated random vector and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)
$$

Proof. From the linearity of expectation, we can write the variance of the linear combination as

$$
\mathbb{E}\left(\sum_{i=1}^{n} a_{i}\left(X_{i}-\mathbb{E} X_{i}\right)\right)^{2}=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var} X_{i}+\sum_{i \neq j} \operatorname{cov}\left(X_{i}, X_{j}\right)
$$

Definition 1.13 (Correlation coefficient). The ratio of covariance of two random variables X, Y and the square root of product of their variances is called the correlation coefficient and denoted by

$$
\rho_{X, Y} \triangleq \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{Var}(X), \operatorname{Var}(Y)}}
$$

Theorem 1.14 (Correlation coefficient). For any two random variables X, Y, the absolute value of correlation coefficient is less than or equal to unity, with equality iff $X=\alpha Y+\beta$ almost surely for constants $\alpha=\sqrt{\frac{\operatorname{Var}(X)}{\operatorname{Var}(Y)}}$ and $\beta=\mathbb{E} X-\alpha \mathbb{E} Y$.
Proof. For two random variables X and Y, we can define normalized random variables $W \triangleq \frac{X-\mathbb{E} X}{\sqrt{\operatorname{Var}(X)}}$ and $Z \triangleq \frac{Y-\mathbb{E} Y}{\sqrt{\operatorname{Var}(Y)}}$. Applying the AM-GM inequality to random variables W, Z, we get

$$
|\operatorname{cov}(X, Y)| \leqslant \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}
$$

Recall that equality is achieved iff $W=Z$ almost surely or equivalently iff $X=\alpha Y+\beta$ almost surely. Taking $U=-Y$, we see that $-\operatorname{cov}(X, Y) \leqslant \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$, and hence the result follows.

2 Characteristic function

Definition 2.1 (Characteristic function). For a random variable X, the characteristic function Φ_{X} is defined by $\Phi_{X}(u) \triangleq \mathbb{E} e^{j u X}$, where $j=\sqrt{-1}$.

Theorem 2.2. Two random variables have the same probability distribution iff they have the same probability distribution.

Proof. It is easy to see the necessity and the sufficiency is difficult.
Lemma 2.3. If $\mathbb{E}\left[X^{k}\right]$ exists and is finite for an integer $k \in \mathbb{N}$, then the derivatives of Φ_{X} up to order k exist and are continuous, and $\Phi_{X}^{(k)}(0)=j^{k} \mathbb{E}\left[X^{k}\right]$.

Definition 2.4. For a non-negative integer-valued random variable X it is often more convenient to work with the z-transform of the PMF, defined by $\Psi_{X}(z)=\mathbb{E} z^{X}=\sum_{k \geqslant 0} z^{k} p_{X}(k)$, for real or complex z with $|z| \leqslant 1$.

Theorem 2.5. Two non-negative integer-valued random variables have the same probability distribution iff their z-transforms are equal. If $\mathbb{E}\left[X^{k}\right]$ is finite it can be found from the derivatives of Ψ_{X} up to the kth order at $z=1$, $\Psi_{X}^{(k)}(1)=\mathbb{E}[X(X-1) \ldots(X-k+1)]$.

Proof. The necessity is clear. For sufficiency, we see that $\Psi_{X}^{(k)}(0)=k!p_{X}(k)$. Further, interchanging the derivative and the summation (by dominated convergence theorem), we get the second result.

