
Lecture-10: Conditional expectation

1 Conditional Expectation

Definition 1.1 (Conditional expectation). Consider two random variables X,Y defined on the same prob-
ability space (Ω,F, P).

(i) The conditional distribution of the random variable X given a non-trivial event B generated by the
random variable Y is

F
X
∣∣ B

(x) =
P({X 6 x} ∩ B)

P(B)
.

We can define F
X
∣∣ B

= 0 for trivial events B ∈ σ(Y) such that P(B) = 0.

(ii) The conditional expectation of random variable X given any event B generated by random variable
Y is given by

E[X
∣∣ B] =

∫
x∈R

xdF
X
∣∣ B

.

(iii) The conditional distribution of the random variable X given the random variable Y, is a function of
the random variable Y, and hence a random variable. In particular, for each event {Y 6 y}

F
X
∣∣ Y
1{Y6y} = F

X
∣∣ {Y6y}

1{Y6y} =
FX,Y(·,y)

FY(y)
1{Y6y} for all y ∈R.

That is, this conditional distribution is the collection (F
X
∣∣ B

: B ∈ σ(Y)) of conditional distributions for

each event B generated by the random variable Y. The probability of the event B and the probability
of the conditional distribution F

X
∣∣ B
1B is P(B).

(iv) The conditional expectation of random variable X given the random variable Y, is a function of the
random variable Y, and hence a random variable. In particular, for each event {Y 6 y}, we have the
event

E[X
∣∣ Y]1{Y6y} = E[X

∣∣ {Y 6 y}]1{Y6y} = 1{Y6y}

∫
x∈R

xdF
X
∣∣ {Y6y}

(x), for all y ∈R.

That is, this conditional expectation is the collection of events (E[X|B] : B ∈ σ(Y)) corresponding to
the conditional expectation given the events generated by the random variable Y. The probability of
the event B and the probability of the conditional expectation E[X

∣∣ B]1B is P(B).

(v) The mean of random variable E[X
∣∣ Y]1{Y6y} for all y ∈R is given by

E[E[X
∣∣Y]1{Y6y}] =

∫
t∈R

dFY(t)1{Y6y}

∫
x∈R

xdF
X
∣∣ {Y6y}

(x) =
∫
(x,t)∈R2

x1{t6y}dFX,Y(x, t) =E[X1{Y6y}].

Similarly, for all events B ∈ σ(Y), we have the event

E[E[X
∣∣ Y]1B] = E[X1B].

That is, the conditional expectation E[X
∣∣ Y] is a function of Y and σ(Y) measurable, and for all events

B ∈ σ(Y), we have
E[E[X

∣∣ Y]1B] = E[X1B].
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Definition 1.2 (Conditional expectation). Consider a probability space (Ω,F, P), a smaller event space
G ⊂ F, a random variable X such that E |X| < ∞. Conditional expectation of X given G is denoted by
Y , E[X

∣∣ G], a random variable on the same probability space such that

(i) Y is G measurable, i.e. Y−1(−∞,y] ∈ G for all y ∈R,

(ii) for all A ∈ G, we have
∫

A XdP = E[X1A] = E[Y1A] =
∫

A YdP,

(iii) E |Y| < ∞.

Definition 1.3. A random variable is independent of an event space G if

P(X−1(−∞, x] ∩ B) = FX(x)P(B), for all x ∈R, B ∈ G.

Proposition 1.4. Let X,Y be random variables on the probability space (Ω,F, P) such that E |X| ,E |Y| < ∞. Let G
and H be event spaces such that G,H ⊂ F. Then

1. linearity: E[αX + βY
∣∣ G] = αE[X

∣∣ G] + βE[Y
∣∣ G], a.s.

2. monotonicity: If X 6 Y a.s., then E[X
∣∣ G]6 E[Y

∣∣ G], a.s.

3. identity: If X is G-measurable and E |X| < ∞, then X = E[X
∣∣ G] a.s. In particular, c = E[c

∣∣ G], for any
constant c ∈R.

4. pulling out what’s known: If Y is G-measurable and E |XY| < ∞, then E[XY
∣∣ G] = YE[X

∣∣ G], a.s.

5. L2-projection: If E |X|2 < ∞, then ζ∗ = E[X
∣∣ G] minimizes E[(X − ζ)2] over all G-measurable random

variables ζ such that E |ζ|2 < ∞.

6. tower property: If H ⊆ G, then E[E[X
∣∣ G] ∣∣H] = E[X

∣∣H], a.s..

7. irrelevance of independent information: If H is independent of σ(G,σ(X)) then

E[X|σ(G,H)] = E[X
∣∣ G], a.s.

In particular, if X is independent of H, then E[X
∣∣H] = E[X], a.s.

Proof. Let X,Y be random variables on the probability space (Ω,F, P) such that E |X| ,E |Y| < ∞. Let G and
H be event spaces such that G,H ⊆ F.

1. linearity: Let Z , αE[X
∣∣ G] + βE[Y

∣∣ G], then since E[X
∣∣ G],E[Y ∈ G] are G-measurable, it follows

that their linear combination Z is also G-measurable. Further, for any A ∈ G, from the linearity of
expectation and definition of conditional expectation, we have

E[Z1A] = αE[E[X
∣∣ G]1A] + βE[E[Y

∣∣ G]1A] = E[(αX + βY)1A].

2. monotonicity: Let ε > 0 and define Aε ,
{

E[X
∣∣ G]−E[Y

∣∣ G] > ε
}
∈ G. Then from the definition of

conditional expectation, we have

0 6 E[(E[X
∣∣ G]−E[Y

∣∣ G])1Aε
] = E[(X−Y)1Aε

]6 0.

Thus, we obtain that P(Aε) > 0 for all ε > 0.

3. identity: It follows from the definition that X satisfies all three conditions for conditional expectation.
The event space generated by any constant function is the trivial event space {∅,Ω} ⊆ G for any event
space. Hence, E[c

∣∣ G] = c.

4. pulling out what’s known: Let Y be G-measurable and E |XY| < ∞, then we need to show that
E[XY1A] = E[YE[X

∣∣ G]1A], for all A ∈ G.

It suffices to show that E[ZX] = E[ZE[X
∣∣ G]] for any simple G-measurable random variable Z with

E |ZX| < ∞, from which the previous statement follows for Z = Y1A.

Let Z = ∑n
k=1 αk1Ak for (A1, . . . , An) ⊂ G, then the result is a consequence of the definition of condi-

tional expectation and linearity.
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5. L2-projection: We can write for G measurable functions ζ,ζ∗ such that Eζ2,E(ζ∗)2 < ∞, from the
linearity of expectation

E(X− ζ)2 = E(X− ζ∗)2 + E(ζ − ζ∗)2 − 2E(X− ζ∗)(ζ − ζ∗).

It is enough to show that X−E[X
∣∣ G] is orthogonal to all G-measurable ζ such that Eζ2 < ∞. Towards

this end, we observe that for G measurable function ζ such that Eζ2 < ∞, we have

E[(X−E[X
∣∣ G])ζ] = E[ζX]− E[ζE[X

∣∣ G]] = E[ζX]− E[E[ζX
∣∣ G]] = 0.

This implies that E(X − ζ)2 > E(X − ζ∗)2 for all G measurable random variables ζ that have finite
second moment.

6. tower property: From the definition of conditional expectation, we know that E[X
∣∣ H] is H mea-

surable, and we can verify that the mean of absolute value is finite. Let H ∈ H ⊆ G, then from the
definition of conditional expectation, we see that

E[E[X
∣∣ G]1H ] = E[X1H ] = E[E[X

∣∣H]1H ].

7. irrelevance of independent information: We assume X > 0 and show that

E[X1A] = E[E[X
∣∣ G]1A], a.s. for all A ∈ σ(G,H).

It suffices to show for A = G ∩ H where G ∈ G and H ∈H. We show that

E[E[X
∣∣ G]1G∩H ] = E[E[X

∣∣ G]1G1H ] = E[E[X
∣∣ G]1G]E[1H ] = E[X1G]E[1H ] = E[X1G∩H ]

1.1 Conditional expectation conditioned on a random vector

Consider the probability space (Ω,F, P), and a random vector X : Ω→Rn. Let πi : Rn→R be the projection
of an n-length vector to its ith component, i.e. πi(X) = Xi.

Exercise 1.5. Show that the function πi : Rn→R defined by g : x 7→ xi is a Borel measurable function.

Since πi : Rn→R is Borel measurable function, Xi = πi ◦ X is a random variable for each i ∈ [n].

Definition 1.6 (Event space generated by a random vector). Let X : Ω→ Rn be a random vector, then the
smallest event space generated by the events of the form X−1(−∞, x1]× · · · × (−∞, xn] for x ∈Rn is called
the event space generated by this random vector X, and denoted by σ(X).

Example 1.7 (Indicator functions). Let A, B ∈ F be events, then X = (1A,1B) is a random vector and

X−1(−∞, x1]× (−∞, x2] = X−1
1 (−∞, x1] ∩ X−1

2 (−∞, x2] =



Ω, min{x1, x2}> 1,
Ac, x1 ∈ [0,1), x2 > 1,
Bc, x1 > 1, x2 ∈ [0,1),
Ac ∩ Bc, x1, x2 ∈ [0,1),
∅, min{x1, x2} < 0.

This implies that the smallest event space generated by this random vector is

σ(X) = {∅, A, Ac, B, Bc, A ∪ B, A ∪ Bc, A ∩ B, A ∩ Bc, Ac ∪ B, Ac ∪ Bc, Ac ∩ B, Ac ∩ Bc,Ω}= σ(∅, A, B,Ω).
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Remark 1. Let (Ai ∈ F : i ∈ [n]) be an n-length sequence of events, then X = (1Ai : i ∈ [n]) is a random vector,
and the smallest event space generated by this random vector is σ(X) = σ(∅,Ω, A1, . . . , An).

Lemma 1.8. For a sequence of random variables (Xi : i ∈N) defined on the same probability space (Ω,F, P), we
have

σ(X1, . . . , Xn) ⊆ σ(X1, . . . , Xn+1).

Proof. For any x ∈Rn+1, any generating event for collection σ(X1, . . . , Xn) is of the form ∩n
i=1X−1

i (−∞, xi]⊆
∩n

i=1X−1
i (−∞, xi] ∩ X−1

n+1(R), a generating event for collection σ(X1, . . . , Xn+1).

Definition 1.9 (Conditional expectation given a random vector). Consider a random variable X : Ω→ R

and a random vector Y : Ω→Rn for some n ∈N, defined on the same probability space (Ω,F, P).

(i) The conditional distribution of the random variable X given a non-trivial event B generated by the
random vector Y is

F
X
∣∣ B

(x) =
P({X 6 x} ∩ B)

P(B)
.

We can define F
X
∣∣ B

= 0 for trivial events B ∈ σ(Y) such that P(B) = 0.

(ii) The conditional expectation of random variable X given any event B generated by random vector Y
is given by

E[X
∣∣ B] =

∫
x∈R

xdF
X
∣∣ B

.

(iii) The conditional distribution of the random variable X given the random vector Y, is a function of the
random vector Y, and hence a random variable. In particular, for each event {Y 6 y}= ∩n

i=1 {Yi 6 yi}

F
X
∣∣ Y
1{Y6y} = F

X
∣∣ {Y6y}

1{Y6y} =
FX,Y(·,y)

FY(y)
1{Y6y} for all y ∈Rn.

That is, this conditional distribution is the collection (F
X
∣∣ B

: B ∈ σ(Y)) of conditional distributions for

each event B generated by the random vector Y. The probability of the event B and F
X
∣∣ B

is P(B).

(iv) The conditional expectation of random variable X given the random vector Y, is a function of the
random vector Y, and hence a random variable. In particular, for each event {Y 6 y}= ∩n

i=1 {Yi 6 yi},
we have the event

E[X
∣∣ Y]1{Y6y} = E[X

∣∣ {Y 6 y}]1{Y6y} = 1{Y6y}

∫
x∈R

xdF
X
∣∣ {Y6y}

(x), for all y ∈Rn.

That is, this conditional expectation is the collection of events (E[X|B] : B ∈ σ(Y)) corresponding to
the conditional expectation given the events generated by the random vector Y. The probability of the
event B and E[X

∣∣ B] is P(B).

(v) The mean of random variable E[X
∣∣ Y]1{Y6y} for all y ∈Rn is given by

E[E[X
∣∣Y]1{Y6y}] =

∫
t∈Rn

dFY(t)1{Y6y}

∫
x∈R

xdF
X
∣∣ {Y6y}

(x) =
∫
(x,t)∈Rn+1

x1{t6y}dFX,Y(x, t) =E[X1{Y6y}].

Similarly, for all events B ∈ σ(Y), we have the event

E[E[X
∣∣ Y]1B] = E[X1B].
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