Lecture-11: Transformation of random vectors

1 Transformation of random variables

Suppose that X_{1} and X_{2} are jointly continuous random variables such that

$$
Y_{1}=g\left(X_{1}, X_{2}\right), \quad Y_{2}=h\left(X_{1}, X_{2}\right)
$$

Let Y_{1}, Y_{2} be jointly continuous random variables with density function $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$.
Remark 1. This condition need not always be true.
Now, given Y_{1} and Y_{2} are random variables we are interested in the probability of the event

$$
A \triangleq\left\{\omega: y_{1}<Y_{1}(\omega) \leqslant y_{1}+d y_{1}, y_{2}<Y_{2}(\omega) \leqslant y_{2}+d y_{2}\right\} .
$$

For continuous random variables Y_{1}, Y_{2} with the joint density $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$, we can write for infinitesimally small $d y_{1}, d y_{2}$

$$
P\left\{\omega: y_{1}<Y_{1}(\omega) \leqslant y_{1}+d y_{1}, y_{2}<Y_{2}(\omega) \leqslant y_{2}+d y_{2}\right\} \approx f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
$$

Let us define a mapping, $T=(g, h)$ which yields,

$$
y_{1}=g\left(x_{1}, x_{2}\right), \quad y_{2}=h\left(x_{1}, x_{2}\right)
$$

If T is a one-to-one mapping such that $T\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)$, then there exists an inverse mapping T^{-1} such that

$$
\left(x_{1}, x_{2}\right)=T^{-1}\left(y_{1}, y_{2}\right) .
$$

Now consider an elemental area $d A\left(x_{1}, x_{2}\right)$ in the vicinity of $\left(x_{1}, x_{2}\right)$. Then, we have the mapping $d A\left(x_{1}, x_{2}\right) \xrightarrow{\mathrm{T}}$ $d A\left(y_{1}, y_{2}\right)$ and the inverse mapping $d A\left(y_{1}, y_{2}\right) \xrightarrow{T^{-1}} d A\left(x_{1}, x_{2}\right)$. It turns out that,

$$
d A\left(x_{1}, x_{2}\right)=\left|J\left(y_{1}, y_{2}\right)\right| d y_{2} d y_{1}
$$

where, $\left|J\left(y_{1}, y_{2}\right)\right|$ is the Jacobian matrix of T^{-1} given by

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|
$$

As T is a one-to-one map, we see that,

$$
\left\{\omega: y_{1}<Y_{1}(\omega) \leqslant y_{1}+d y_{1}, y_{2}<Y_{2}(\omega) \leqslant y_{2}+d y_{2}\right\} \equiv\left\{\omega:\left(X_{1}(\omega), X_{2}(\omega)\right) \in d A\left(x_{1}, x_{2}\right)\right\}
$$

As these events are equal, their probabilities must also be equal. Thus, we have,

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \approx f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)\left|J\left(y_{1}, y_{2}\right)\right| d y_{1} d y_{2} \text { as } d y_{1}, d y_{2} \rightarrow 0 .
$$

Finally, we have,

$$
f_{Y_{1}, \gamma_{2}}\left(y_{1}, y_{2}\right) \approx f_{X_{1}, x_{2}}\left(x_{1}\left(y_{1}, y_{2}\right), x_{2}\left(y_{1}, y_{2}\right)\right)\left|J\left(y_{1}, y_{2}\right)\right|
$$

Example 1.1 (Sum of random variables). Suppose that X_{1} and X_{2} are jointly continuous random variables and $Y_{1}=X_{1}+X_{2}$. Let us compute $f_{Y_{1}}\left(y_{1}\right)$ using the above relation. Let us define $Y_{2}=X_{2}$ so that $\left|J\left(y_{1}, y_{2}\right)\right|=1$. This implies, $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$. Thus, we may compute the marginal density of Y_{1} as,

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d y_{2}=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(y_{1}-y_{2}, y_{2}\right) d y_{2} .
$$

Special Case : Suppose X_{1} and X_{2} are independent. Then,

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}}\left(y_{1}-y_{2}\right) f_{X_{2}}\left(y_{2}\right) d y_{2}=\left(f_{X_{1}} * f_{X_{2}}\right)\left(y_{1}\right)
$$

where $*$ represents convolution.

Now, let us try to compute the above density $f_{Y_{1}} y_{1}$ in a more direct manner. We know,

$$
f_{Y_{1}}\left(y_{1}\right)=\frac{d F_{Y_{1}}\left(y_{1}\right)}{d y_{1}}
$$

where, $F_{Y_{1}}\left(y_{1}\right)=P\left\{Y_{1} \leqslant y_{1}\right\}=P\left\{X_{1}+X_{2} \leqslant y_{1}\right\}$. Representing this probability as the area under the joint density function, we have,

$$
F_{Y_{1}}\left(y_{1}\right)=\int_{\infty}^{\infty} d x_{1} \int_{-\infty}^{y_{1}-x_{1}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}
$$

Now, by applying change of variable $\left(x_{1}, t\right)=\left(x_{1}, x_{1}+x_{2}\right)$ and changing the order of integration, we see that,

$$
F_{y_{1}}\left(y_{1}\right)=\int_{-\infty}^{y_{1}} d t \int_{-\infty}^{\infty} d x_{1} f_{X_{1}, X_{2}}\left(x_{1}, t-x_{1}\right)
$$

Finally, we get the expected result

$$
f_{Y_{1}}\left(y_{1}\right)=\frac{d F_{Y_{1}}\left(y_{1}\right)}{d y_{1}}=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, y_{1}-x_{1}\right) d x_{1} .
$$

2 Characteristic function

Suppose that X is a continuous random variable with density $f_{X}(x)$. Then, recall that the characteristic function is given by

$$
\mathbb{E}\left[e^{j u X}\right]=\int_{-\infty}^{\infty} e^{j u X} f_{X}(x) d x
$$

where, $e^{j u X}=\cos u X+j \sin u X$.

