
Lecture-12: Characteristic function

1 Characteristic function

Definition 1.1. Let j ∈ C such that j2 = −1, then the characteristic function ΦX : R→ R, of a random
variable X is defined as

ΦX(u), E[ejuX ], for all u ∈R.

Remark 1. Following statements are true for characteristic functions.

1. Since ejθ = cosθ + jsinθ, the characteristic function can be equivalently written as

ΦX(u) = E[cosuX] + jE[sinuX].

2. Suppose that X : Ω→ X is a discrete random variable. Then

ΦX(u) = E[ejuX ] = ∑
x∈X:PX(x)>0

ejuxPX(x)

3. Suppose that X : Ω→R is a continuous random variable with density function fX : R→R+. Then,

ΦX(u) =
∫ ∞

−∞
ejuX fX(x)dx.

4. The characteristic function ΦX(u) is always finite, since

|ΦX(u)| =
∣∣∣∣∫ ∞

−∞
ejuX fX(x)dx

∣∣∣∣6 ∫ ∞

−∞

∣∣∣ejuX fX(x)
∣∣∣dx =

∫ ∞

−∞
fX(x)dx = 1.

Lemma 1.2. If E |X|k is finite, then E |X|i is finite for i ∈ [k].

Proof. It can be easily seen when X : Ω→ X ⊂ R+ is a non-negative discrete random variable with proba-
bility mass function PX : X→ [0,1]. We partition the alphabet X= X0 ∪X1 into disjoint subsets where

X0 , {x ∈ X : x ∈ [0,1]} .

Then, we can write

E[Xi] = ∑
x∈X

xiPX(x) = ∑
x∈X0

xiPX(x) + ∑
x∈X1

xiPX(x)6 1 + ∑
x∈X1

xkPX(x) < ∞.

Theorem 1.3. If E |X|k is finite for some integer k > 1, then Φ(i)
X (u) for i = [k] are all finite and continuous functions

of u. Further, Φ(i)
X (0) = jkE[Xi] for all i ∈ [k].

Proof. Let us differentiate the characteristic function ΦX(u), with respect to u, to write

Φ
′
X(u) =

dΦX(u)
du

=
d

du

(∫ ∞

−∞
ejuX fX(x)dx

)
.

Exchanging derivative and the integration (which can be done since ejux is a bounded function with all
derivatives), and evaluating the derivative at u = 0, we get

Φ
′
X(0) =

∫ ∞

−∞

dejuX

du

∣∣∣
u=0

fX(x)dx =
∫ ∞

−∞
(jxejuX)

∣∣∣
u=0

fX(x)dx = jE[X].

It turns out that Φ
′
X(0) = jE[X], when both L.H.S and R.H.S are finite. Similarly, Φ(k)

X (0) = jkE[Xk], when
both L.H.S and R.H.S are finite.
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2 Moment Generating Function

Definition 2.1. For a random variable X, the moment generating function denoted by MX : R→ R, is
defined by

MX(t), E[etX ], for all t ∈R.

Lemma 2.2. When MX(t) is finite for some t ∈R and random variable X, we have

MX(t) = E[etX ] = 1 + ∑
n∈N

tn

n!
E[Xn].

Proof. From the Taylor series expansion of eθ around θ = 0, we get eθ = 1 + ∑n∈N
θn

n! . Therefore, taking
θ = tX, we can write

etX = 1 + ∑
n∈N

tn

n!
Xn.

Taking expectation on both sides, the result follows from the linearity of expectation, when both sides have
finite expectation.

Definition 2.3. For a discrete random variable X : Ω→X with probability mass function PX : X→ [0,1], the
probability generating function ΨX : C→ C is defined by

ΨX(z) = E[zX ] = ∑
x∈X

zxPX(x), z ∈ C.

Lemma 2.4. The absolute value of the probability generating function evaluated at z ∈ C with |z|6 1 for a positive
simple random variable X, is upper bounded by unity.

Proof. Let z ∈ C with |z| 6 1. Let PX : X→ [0,1] be the probability mass function of the positive simple
random variable X. Since any realization x ∈ X of random variable X is positive, we can write

|ΨX(z)| =
∣∣∣∣∣ ∑x∈XzxPX(x)

∣∣∣∣∣6 ∑
x∈X
|z|x PX(x)6 ∑

x∈X
PX(x) = 1.

Definition 2.5. For a positive random variable X, the k-th order factorial moment of random variable X is
defined as

E

[
k−1

∏
i=0

(X− i)

]
= E[X(X− 1)(X− 2) . . . (X− k + 1)].

Theorem 2.6. For a positive simple random variable X, the k-th derivative of probability generating function evalu-
ated at z = 1 is the k-th order factorial moment of X. That is,

Ψ(k)
X (1) = E[X(X− 1)(X− 2) . . . (X− k + 1)].

Proof. It follows from the interchange of derivative and expectation.
Remark 2. Moments can be recovered from kth order factorial moments. For example,

E[X] = Ψ
′
X(1), E[X2] = Ψ(2)

X (1) + Ψ
′
X(1).
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