Lecture-14: Almost sure convergence of random variables

1 Almost sure convergence

Consider a probability space (Ω, \mathcal{F}, P). Recall that a random variable X is an \mathcal{F}-measurable function on the sample space Ω such that $X^{-1}(-\infty, x] \in \mathcal{F}$ for all $x \in \mathbb{R}$. A sequence of random variables $\left(X_{n}(\omega): n \in \mathbb{N}\right)$ is hence a sequence of \mathcal{F}-measurable functions. There are many possible definitions for convergence of a sequence of random variables. One idea is to require $X_{n}(\omega)$ to converge for each fixed ω. However, at least intuitively, what happens on an event of probability zero is not important.
Definition 1.1. A statement holds almost surely (abbreviated a.s.) if there exists an event called the exception set $N \in \mathcal{F}$ with $P(N)=0$ such that the statement holds if $\omega \notin N$.

Example 1.2 (Almost sure equality). Two random variables X, Y defined on the probability space (Ω, \mathcal{F}, P) are said to be equal a.s. if there exists an exception set

$$
N=\{\omega \in \Omega: X(\omega) \neq Y(\omega)\} \in \mathcal{F}
$$

and $P(N)=0$. Then Y is called a version of X, and we can define an equivalence class of a.s. equal random variables.

Example 1.3 (Almost sure monotonicity). Two random variables X, Y defined on the probability space (Ω, \mathcal{F}, P) are said to be $X \leqslant Y$ a.s. if there exists an exception set $N=\{\omega \in \Omega: X(\omega)>Y(\omega)\} \in \mathcal{F}$ and $P(N)=0$.

Definition 1.4. If $\left(X_{n}: n \in \mathbb{N}\right)$ is a sequence of random variables, then $\lim _{n} X_{n}$ exists a.s. means there exists an exception event $N \in \mathcal{F}$, such that $P(N)=0$ and if $\omega \notin N$, then $\lim _{n} X_{n}(\omega)$ exists. That is,

$$
N^{c}=\left\{\omega \in \Omega: \lim \sup _{n} X_{n}(\omega)=\liminf X_{n}(\omega)\right\} .
$$

Let X be the point-wise limit of the sequence of random variables $\left(X_{n}(\omega): n \in \mathbb{N}\right)$ on the set N^{c}, then we say that the sequence $\left(X_{n}(\omega): n \in \mathbb{N}\right)$ converges almost surely to X, and denote it as

$$
\lim _{n} X_{n}=X \text { a.s. }
$$

Example 1.5 (Convergence almost surely but not everywhere). Consider the probability space $([0,1], \mathcal{B}([0,1]), \lambda)$ such that $\lambda([a, b])=b-a$ for all $0 \leqslant a \leqslant b \leqslant 1$. We define the scaled indicator random variable $X_{n}: \Omega \rightarrow\{0,1\}$ such that

$$
X_{n}(\omega)=n \mathbb{1}_{\left[0, \frac{1}{n}\right]}(\omega)
$$

Let $N=\{0\}$, then for any $\omega \notin N$, there exists $m=\left\lceil\frac{1}{\omega}\right\rceil \in \mathbb{N}$, such that for all $n \geqslant m$, we have $X_{n}(\omega)=0$. That is, $\lim _{n} X_{n}=0$ a.s. since $\lambda(N)=0$. However, $X_{n}(0)=n$ for all $n \in \mathbb{N}$.

2 Convergence in probability

Definition 2.1. A sequence $\left(X_{n}: n \in \mathbb{N}\right)$ of random variables converges in probability to a random variable X, if for any $\epsilon>0$

$$
\lim _{n} P\left\{\omega \in \Omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}=0
$$

Remark 1. For a sequence $\left(X_{n}: n \in \mathbb{N}\right)$, almost sure convergence of means that for almost all outcomes ω, the difference $X_{n}(\omega)-X(\omega)$ gets small and stays small. Convergence in probability is weaker and merely requires that the probability of the difference $X_{n}(\omega)-X(\omega)$ being non-trivial becomes small.

Example 2.2 (Convergence in probability but not almost surely). Consider the probability space $([0,1], \mathcal{B}([0,1]), \lambda)$ such that $\lambda([a, b])=b-a$ for all $0 \leqslant a \leqslant b \leqslant 1$. For each $k \in \mathbb{N}$, we consider the sequence $S_{k}=\sum_{i=1}^{k} i$, and define integer intervals $I_{k} \triangleq\left\{S_{k-1}+1, \ldots, S_{k}\right\}$. Clearly, the intervals $\left(I_{k}: k \in \mathbb{N}\right)$ partition the natural numbers, and each $n \in \mathbb{N}$ lies in some I_{k}, such that $n=S_{k-1}+i$ for $i \in[k]$. Therefore, for each $n \in \mathbb{N}$, we define indicator random variable $X_{n}: \Omega \rightarrow\{0,1\}$ such that

$$
X_{n}(\omega)=\mathbb{1}_{\left[\frac{i-1}{k}, \frac{i}{k}\right]}(\omega)
$$

For any $\omega \in[0,1]$, we have $X_{n}(\omega)=1$ for infinitely many values since there exist infinitely many (i, k) pairs such that $\frac{(i-1)}{k} \leqslant \omega \leqslant \frac{i}{k}$, and hence $\limsup _{n} X_{n}(\omega)=1$ and hence $\lim _{n} X_{n}(\omega) \neq 0$. However, $\lim _{n} X_{n}(\omega)=0$ in probability, since

$$
\lim _{n} \lambda\left\{X_{n}(\omega) \neq 0\right\}=\lim _{n} \frac{1}{k}=0
$$

3 Borel-Cantelli Lemma

Lemma 3.1 (infinitely often and almost all). Let $\left(A_{n} \in \mathcal{F}: n \in \mathbb{N}\right)$ be a sequence of events.
(a) For some subsequence $\left(k_{n}: n \in \mathbb{N}\right)$ depending on ω, we have

$$
\limsup _{n} A_{n}=\left\{\omega \in \Omega: \sum_{n \in \mathbb{N}} \mathbb{1}_{A_{n}}(\omega)=\infty\right\}=\left\{\omega \in \Omega: \omega \in A_{k_{n}}, n \in \mathbb{N}\right\}=\left\{A_{n} \text { infinitely often }\right\}
$$

(b) For a finite $n_{0}(\omega) \in \mathbb{N}$ depending on ω, we have

$$
\liminf _{n} A_{n}=\left\{\omega \in \Omega: \omega \in A_{n} \text { for all } n \geqslant n_{0}(\omega)\right\}=\left\{\omega \in \Omega: \sum_{n \in \mathbb{N}} \mathbb{1}_{A_{n}^{c}}(\omega)<\infty\right\}=\left\{A_{n} \text { for all but finitely many } n\right\}
$$

Proof. Let $\left(A_{n} \in \mathcal{F}: n \in \mathbb{N}\right)$ be a sequence of events.
(a) Let $\omega \in \limsup _{n} A_{n}=\cap_{n \in \mathbb{N}} \sup _{k \geqslant n} A_{k}$, then $\omega \in \sup _{k \geqslant n} A_{k}$ for all $n \in \mathbb{N}$. Therefore, for each $n \in \mathbb{N}$, there exists $k_{n} \in \mathbb{N}$ such that $\omega \in A_{k_{n}}$, and hence

$$
\sum_{j \in \mathbb{N}} \mathbb{1}_{A_{j}}(\omega) \geqslant \sum_{n \in \mathbb{N}} \mathbb{1}_{A_{k_{n}}}(\omega)=\infty
$$

Conversely, if $\sum_{j \in \mathbb{N}} \mathbb{1}_{A_{j}}(\omega)=\infty$, then for each $n \in \mathbb{N}$ there exists a $k_{n} \in \mathbb{N}$ such that $\omega \in A_{k_{n}}$ and hence $\omega \in \cup_{k \geqslant n} A_{k}$ for all $n \in \mathbb{N}$.
(b) Let $\omega \in \liminf _{n} A_{n}$, then there exists $n_{0}(\omega)$ such that $\omega \in A_{n}$ for all $n \geqslant n_{0}(\omega)$. Conversely, if $\sum_{j \in \mathbb{N}} \mathbb{1}_{A_{j}^{c}}(\omega)<$ ∞, then there exists $n_{0}(\omega)$ such that $\omega \in A_{n}$ for all $n \geqslant n_{0}(\omega)$.

Theorem 3.2 (Convergences a.s. implies in probability). If a sequence of random variables $\left(X_{n}(\omega): n \in \mathbb{N}\right)$ defined on a probability space (Ω, \mathcal{F}, P) converges a.s. to a random variable X, then it converges in probability to the same random variable.

Proof. Since $\lim _{n} X_{n}=X$ a.s., let N be the exception set. Let $\epsilon>0$ and $\omega \notin N$, then there exists an $n_{0}(\omega)$ such that $\left|X_{n}-X\right| \leqslant \epsilon$ for all $n \geqslant n_{0}$. Defining event $A_{n}=\left\{\omega \in \Omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}$, we have

$$
1=P\left(A_{n}^{c} \text { for all but finitely many } n\right)=P\left(\liminf _{n} A_{n}^{c}\right)
$$

Since $\liminf _{n} A_{n}^{c}=\left(\limsup _{n} A_{n}\right)^{c}$, we get

$$
0=P\left(\lim \sup _{n} A_{n}\right)=\lim _{n} P\left(\sum_{k \geqslant n} A_{k}\right) \geqslant \lim _{n} P\left(A_{n}\right) \geqslant 0 .
$$

Proposition 3.3 (Borel-Cantelli Lemma). Let $\left(A_{n} \in \mathcal{F}: n \in \mathbb{N}\right)$ be a sequence of events such that $\sum_{n \in \mathbb{N}} P\left(A_{n}\right)<$ ∞, then $P\left(A_{n}\right.$ i.o. $)=0$.
Proof. We can write the probability of infinitely often occurrence of A_{n}, by the continuity and sub-additivity of probability as

$$
P\left(\limsup A_{n}\right)=\lim _{n} P\left(\cup_{k \geqslant n} A_{k}\right) \leqslant \lim _{n} \sum_{k \geqslant n} P\left(A_{k}\right)=0 .
$$

The last equality follows from the fact that $\sum_{n \in \mathbb{N}} P\left(A_{n}\right)<\infty$.
Proposition 3.4 (Borel zero-one law). If $\left(A_{n} \in \mathcal{F}: n \in \mathbb{N}\right)$ is a sequence of independent events, then

$$
P\left(A_{n} \text { i.o. }\right)= \begin{cases}0, & \text { iff } \sum_{n} P\left(A_{n}\right)<\infty \\ 1, & \text { iff } \sum_{n} P\left(A_{n}\right)=\infty .\end{cases}
$$

Proof. Let $\left(A_{n} \in \mathcal{F}: n \in \mathbb{N}\right)$ be a sequence of independent events.
(a) From Borel-Cantelli Lemma, if $\sum_{n} P\left(A_{n}\right)<\infty$ then $P\left(A_{n}\right.$ i.o. $)=0$.
(b) Conversely, suppose $\sum_{n} P\left(A_{n}\right)=\infty$, then $\sum_{k \geqslant n} P\left(A_{k}\right)=\infty$ for all $n \in \mathbb{N}$. From the definition of limsup and liminf, continuity of probability, and independence of events $\left(A_{k} \in \mathcal{F}: k \in \mathbb{N}\right)$ we get

$$
P\left(A_{n} \text { i.o. }\right)=1-P\left(\liminf _{n} A_{n}^{c}\right)=1-\lim _{n} \lim _{m} P\left(\cap_{k=n}^{m} A_{k}^{c}\right)=1-\lim _{n} \lim _{m} \prod_{k=n}^{m}\left(1-P\left(A_{k}\right)\right)
$$

Since $1-x \leqslant e^{-x}$ for all $x \in \mathbb{R}$, from the above equation, the continuity of exponential function, and the hypothesis, we get

$$
1 \geqslant P\left(A_{n} \text { i.o. }\right) \geqslant 1-\lim _{n} \lim _{m} e^{-\sum_{k=n}^{m} P\left(A_{k}\right)}=1-\lim _{n} \exp \left(-\sum_{k \geqslant n} P\left(A_{k}\right)\right)=1 .
$$

Example 3.5 (Convergence in probability can imply almost sure convergence). Consider a sequence of Bernoulli random variables $\left(X_{n} \in\{0,1\}: n \in \mathbb{N}\right)$ defined on the probability space (Ω, \mathcal{F}, P) such that $P\left\{X_{n}=1\right\}=p_{n}$ for all $n \in \mathbb{N}$. Note that the sequence of random variables is not assumed to be independent, and definitely not identical. If $\lim _{n} p_{n}=0$, then we see that $\lim _{n} X_{n}=0$ in probability. (

In addition, if $\sum_{n \in \mathbb{N}} p_{n}<\infty$, then $\lim _{n} X_{n}=0$ a.s. To see this, we observe from application of the Borel-Cantelli Lemma to events $\left(A_{n}=\left\{X_{n}=1\right\}: n \in \mathbb{N}\right)$ that

$$
1=P\left(\left(\limsup \sup _{n} A_{n}\right)^{c}\right)=P\left(\left(\liminf _{n} A_{n}^{c}\right)\right.
$$

That is, $\lim _{n} X_{n}=0$ for $\omega \in \liminf _{n} A_{n}^{c}$, implying almost sure convergence.

Theorem 3.6. A random sequence $\left(X_{n}: n \in \mathbb{N}\right)$ converges to a random variable X in probability, then there exists a subsequence $\left(n_{k}: k \in \mathbb{N}\right) \subset \mathbb{N}$ such that $\left(X_{n_{k}}: k \in \mathbb{N}\right)$ converges almost surely to X.

Proof. Letting $n_{1}=1$, we define the following subsequence and event recursively for each $j \in \mathbb{N}$,

$$
n_{j} \triangleq \inf \left\{N>n_{j-1}: P\left\{\left|X_{r}-X\right|>2^{-j}\right\}<2^{-j}, \text { for all } r \geqslant N\right\}, \quad A_{j} \triangleq\left\{\left|X_{n_{j+1}}-X\right|>2^{-j}\right\}
$$

From the construction, we have $\lim _{k} n_{k}=\infty$, and $P\left(A_{j}\right)<2^{-j}$ for each $j \in \mathbb{N}$. Therefore, $\sum_{k \in \mathbb{N}} P\left(A_{k}\right)<\infty$, and hence by the Borel-Cantelli Lemma, we have $P\left(\limsup _{k} A_{k}\right)=0$. Let $N=\limsup A_{k}$ be the exception set such that for any outcome $\omega \notin N$, for all but finitely many $j \in \mathbb{N}$

$$
\left|X_{n_{j}}(\omega)-X(\omega)\right| \leqslant 2^{-j}
$$

That is, for all $\omega \notin N$, we have $\lim _{n} X_{n}(\omega)=X(\omega)$.
Theorem 3.7. A random sequence $\left(X_{n}: n \in \mathbb{N}\right)$ converges to a random variable X in probability iff each subsequence $\left(X_{n_{k}}: k \in \mathbb{N}\right)$ contains a further subsequence $\left(X_{n_{k_{j}}}: j \in \mathbb{N}\right)$ converges almost surely to X.

