Lecture-16: Weak convergence of random variables

1 Convergence in distribution

Definition 1.1. A sequence $\left(X_{n}: n \in \mathbb{N}\right)$ of random variables converges in distribution to a random variable X if

$$
\lim _{n} F_{X_{n}}(x)=F_{X}(x)
$$

at all continuity points x of F_{X}. Convergence in distribution is denoted by $\lim _{n} X_{n}=X$ in distribution.
Proposition 1.2. Let $\left(X_{n}: n \in \mathbb{N}\right)$ be a sequence of random variables and let X be a random variable. Then the following are equivalent:
(a) $\lim _{n} X_{n}=X$ in distribution.
(b) $\lim _{n} \mathbb{E}\left[g\left(X_{n}\right)\right]=\mathbb{E}[g(X)]$ for any bounded continuous function g.
(c) Characteristic functions converge point-wise, i.e. $\lim _{n} \Phi_{X_{n}}(u) \rightarrow \Phi_{X}(u)$ for each $u \in R$.

Proof. Let $\left(X_{n}: n \in \mathbb{N}\right)$ be a sequence of random variables and let X be a random variable. We will show that $(a) \Longrightarrow(b) \Longrightarrow(c) \Longrightarrow(a)$.
$(a) \Longrightarrow(b):$ Let $\lim _{n} X_{n}=X$ in distribution, then $\lim _{n} \int_{x \in \mathbb{R}} g(x) d F_{X_{n}}(x)=\int_{x \in \mathbb{R}} g(x) \lim _{n} d F_{X_{n}}(x)$ by the bounded convergence theorem for any bounded continuous function g.
$(b) \Longrightarrow(c):$ Let $\lim _{n} \mathbb{E}\left[g\left(X_{n}\right)\right]=\mathbb{E}[g(X)]$ for any bounded continuous function g. Taking $g(x)=e^{j u x}$, we get the result.
$(c) \Longrightarrow(a):$ The proof of this part is technical and is omitted.

Example 1.3 (Convergence in distribution but not in probability). Consider a sequence of nondegenerate continuous i.i.d. random variables $\left(X_{n}: n \in \mathbb{N}\right)$ and independent random variable X with the common distribution F_{X}. Then $F_{X_{n}}=F_{X}$ for all $n \in \mathbb{N}$, and hence $\lim _{n} X_{n}=X$ in distribution. However, for any $n \in \mathbb{N}$ and $\epsilon>0$, from the monotonicity of distribution function, we have

$$
P\left\{\left|X_{n}-X\right|>\epsilon\right\}=\mathbb{E} \mathbb{1}_{\left\{X_{n} \notin[X-\epsilon, X+\epsilon]\right\}}=\mathbb{E} F_{X}(X+\epsilon)-\mathbb{E} F_{X}(X-\epsilon)>0 .
$$

Lemma 1.4 (Convergence in probability implies in distribution). Consider a sequence ($X_{n}: n \in \mathbb{N}$) of random variables and a random variable X, such that $\lim _{n} X_{n}=X$ in probability, then $\lim _{n} X_{n}=X$ in distribution.

Proof. Fix $\epsilon>0$, and consider the event $E_{n} \triangleq\left\{\omega \in \Omega:\left|X_{n}-X\right|(\omega)>\epsilon\right\}=\left\{X_{n} \notin[X-\epsilon, X+\epsilon]\right\} \in \mathcal{F}$. We further define events $A_{n}(x) \triangleq\left\{X_{n} \leqslant x\right\}$ and $A(x) \triangleq\{X \leqslant x\}$, then we can write

$$
\begin{array}{ll}
A_{n}(x) \cap A(x+\epsilon) \subseteq A(x+\epsilon), & A_{n}(x) \cap A^{c}(x+\epsilon) \subseteq E_{n} \\
A(x-\epsilon) \cap A_{n}(x) \subseteq A_{n}(x), & A(x-\epsilon) \cap A_{n}^{c}(x) \subseteq E_{n}
\end{array}
$$

From the above set relations, law of total probability, and union bound, we have

$$
F(x-\epsilon)-P\left(E_{n}\right) \leqslant F_{n}(x) \leqslant F(x+\epsilon)+P\left(E_{n}\right)
$$

From the convergence in probability, we have $\lim _{n} P\left(E_{n}\right)=0$ get

$$
F(x-\epsilon) \leqslant \liminf _{n} F_{n}(x) \leqslant \limsup F_{n} F_{n}(x) \leqslant F(x+\epsilon) .
$$

We get the result at the continuity points of F_{X}, since the choice of ϵ was arbitrary.
Theorem 1.5 (Central Limit Theorem). Consider an i.i.d. random sequence $\left(X_{n}: n \in \mathbb{N}\right)$ with $\mathbb{E} X_{n}=\mu$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}$, defined on the probability space (Ω, \mathcal{F}, P). We define the n-sum as $S_{n}=\sum_{i=1}^{n} X_{i}$ and consider a standard normal random variable Y with density function $f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}}$ for all $y \in \mathbb{R}$. Then,

$$
\lim _{n} \frac{S_{n}-n \mu}{\sigma \sqrt{n}}=Y \text { in distribution. }
$$

Proof. The classical proof is using the characteristic functions. Let $Z_{i} \triangleq \frac{X_{i}-\mu}{\sigma}$ for all $i \in \mathbb{N}$, then the shifted and scaled n-sum $\frac{S_{n}-n \mu}{\sigma \sqrt{n}}=\sum_{i=1}^{n} Z_{i}$ We use the third equivalence in Proposition 1.2 to show that the characteristic function of converges to the characteristic function of the standard normal. We define the characteristic functions

$$
\Phi_{n}(u) \triangleq \mathbb{E} \exp \left(j u \frac{\left(S_{n}-n \mu\right)}{\sigma \sqrt{n}}\right), \quad \Phi_{Z_{i}}(u) \triangleq \mathbb{E} \exp \left(j u Z_{i}\right), \quad \Phi_{Y}(u) \triangleq \mathbb{E} \exp (j u \Upsilon)
$$

We can compute the characteristic function of the standard normal as

$$
\Phi_{Y}(u)=\frac{1}{\sqrt{2 \pi}} \int_{y \in \mathbb{R}} e^{-\frac{u^{2}}{2}} \exp \left(-\frac{(y-j u)^{2}}{2}\right) d y=e^{-\frac{u^{2}}{2}}
$$

Since $\left(Z_{i}: n \in \mathbb{N}\right)$ is a zero mean i.i.d. sequence, and using the Taylor expansion of the characteristic function, we have

$$
\Phi_{n}(u)=\prod_{i=1}^{n} \mathbb{E} \exp \left(j u \frac{\left(X_{i}-\mu\right)}{\sigma \sqrt{n}}\right)=\left[\Phi_{Z_{1}}\left(\frac{u}{\sqrt{n}}\right)\right]^{n}=\left[1-\frac{u^{2}}{2 n}+o\left(\frac{u^{2}}{n}\right)\right]^{n} .
$$

For any $u \in \mathbb{R}$, taking limit $n \in \mathbb{N}$, we get the result.

2 Strong law of large numbers

Definition 2.1. For a random sequence $\left(X_{n}: n \in \mathbb{N}\right)$ with bounded mean $\mathbb{E}\left|X_{n}\right|<\infty$, we define the n-sum as $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ and the empirical n-mean $\frac{S_{n}}{n}$ for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, we define event

$$
E_{n} \triangleq\left\{\omega \in \Omega:\left|S_{n}-\mathbb{E} S_{n}\right|>n \epsilon\right\} \in \mathcal{F}
$$

Theorem 2.2 (L^{4} strong law of large numbers). Let $\left(X_{n}: n \in \mathbb{N}\right)$ be a sequence of pair-wise uncorrelated random variables with bounded mean $\mathbb{E} X_{n}$ and uniformly bounded fourth central moment $\mathbb{E}\left(X_{n}-\mathbb{E} X_{n}\right)^{4} \leqslant B<\infty$ for all $n \in \mathbb{N}$. Then, the empirical n-mean converges to $\lim _{n} \frac{\mathbb{E} S_{n}}{n}$ almost surely.

Proof. From the Markov's and Minkowski's inequality, we have $P\left(E_{n}\right) \leqslant \frac{\sum_{i=1}^{n} \mathbb{E}\left(X_{i}-\mu\right)^{4}}{n^{4} \epsilon^{2}} \leqslant \frac{B+\mu^{4}}{n^{3} \epsilon^{2}}$. It follows that the $\sum_{n \in \mathbb{N}} P\left(E_{n}\right)<\infty$, and hence by Borel Canteli Lemma, we have $P\left\{E_{n}^{c}\right.$ for all but finitely many $\left.n\right\}=$ 1. Since, the choice of ϵ was arbitrary, the result follows.

Theorem 2.3 (L^{2} strong law of large numbers). Let $\left(X_{n}: n \in \mathbb{N}\right)$ be a sequence of pair-wise uncorrelated random variables with mean $\mathbb{E} X_{n}$ and uniformly bounded variance $\operatorname{Var}\left(X_{n}\right) \leqslant B<\infty$ for all $n \in \mathbb{N}$. Then, the empirical n-mean converges to $\lim _{n} \frac{\mathbb{E} S_{n}}{n}$ almost surely.

Proof. For each $n \in \mathbb{N}$, we define events $F_{n} \triangleq E_{n^{2}}$, and

$$
G_{n} \triangleq\left\{\max _{n^{2} \leqslant k<(n+1)^{2}}\left|S_{k}-S_{n^{2}}-\mathbb{E}\left(S_{k}-S_{n^{2}}\right)\right|>n^{2} \epsilon\right\}=\bigcup_{n^{2} \leqslant k<(n+1)^{2}}\left\{\omega \in \Omega:\left|\sum_{i=n^{2}}^{k} X_{i}-\mathbb{E} X_{i}\right|>n^{2} \epsilon\right\} .
$$

From the Markov's inequality and union bound, we have

$$
P\left(F_{n}\right) \leqslant \frac{\sum_{i=1}^{n^{2}} \operatorname{Var}\left(X_{i}\right)}{n^{4} \epsilon^{2}} \leqslant \frac{B}{n^{2} \epsilon^{2}}, \quad P\left(G_{n}\right) \leqslant \sum_{k=0}^{2 n} \frac{k B}{n^{4} \epsilon} \leqslant \frac{(2 n+1) B}{n^{3} \epsilon} .
$$

Therefore, $\sum_{n \in \mathbb{N}} P\left(F_{n}\right)<\infty$ and $\sum_{n \in \mathbb{N}} P\left(G_{n}\right)<\infty$, and hence by Borel Canteli Lemma, we have

$$
\lim _{n} \frac{S_{n^{2}}-\mathbb{E} S_{n^{2}}}{n^{2}}=\lim _{n} \frac{S_{k}-S_{n^{2}}-\mathbb{E}\left(S_{k}-S_{n^{2}}\right)}{n^{2}}=0 \text { a.s. }
$$

The result follows from the fact that for any $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that $k \in\left\{n^{2}, \ldots,(n+1)^{2}-1\right\}$ and hence

$$
\frac{\left|S_{k}-\mathbb{E} S_{k}\right|}{k} \leqslant\left(\frac{\left|S_{n^{2}}-\mathbb{E} S_{n^{2}}\right|}{n^{2}}+\frac{\left|S_{k}-S_{n^{2}}-\mathbb{E}\left(S_{k}-S_{n^{2}}\right)\right|}{n^{2}}\right) .
$$

Theorem 2.4 (L^{1} strong law of large numbers). Let $\left(X_{n}: n \in \mathbb{N}\right)$ be a sequence of pair-wise uncorrelated random variables such that $\mathbb{E}\left|X_{n}\right| \leqslant B<\infty$ for all $n \in \mathbb{N}$. Then, the empirical n-mean converges to $\lim _{n} \frac{\mathbb{E} S_{n}}{n}$ almost surely.

