
Lecture-16: Weak convergence of random variables

1 Convergence in distribution

Definition 1.1. A sequence (Xn : n ∈N) of random variables converges in distribution to a random vari-
able X if

lim
n

FXn(x) = FX(x)

at all continuity points x of FX . Convergence in distribution is denoted by limn Xn = X in distribution.

Proposition 1.2. Let (Xn : n ∈N) be a sequence of random variables and let X be a random variable. Then the
following are equivalent:

(a) limn Xn = X in distribution.

(b) limn E[g(Xn)] = E[g(X)] for any bounded continuous function g.

(c) Characteristic functions converge point-wise, i.e. limn ΦXn(u)→ ΦX(u) for each u ∈ R.

Proof. Let (Xn : n ∈N) be a sequence of random variables and let X be a random variable. We will show
that (a) =⇒ (b) =⇒ (c) =⇒ (a).

(a) =⇒ (b): Let limn Xn = X in distribution, then limn
∫

x∈R
g(x)dFXn(x) =

∫
x∈R

g(x) limn dFXn(x) by the bounded
convergence theorem for any bounded continuous function g.

(b) =⇒ (c): Let limn E[g(Xn)] = E[g(X)] for any bounded continuous function g. Taking g(x) = ejux, we get the
result.

(c) =⇒ (a): The proof of this part is technical and is omitted.

Example 1.3 (Convergence in distribution but not in probability). Consider a sequence of non-
degenerate continuous i.i.d. random variables (Xn : n ∈N) and independent random variable X with
the common distribution FX . Then FXn = FX for all n ∈ N, and hence limn Xn = X in distribution.
However, for any n ∈N and ε > 0, from the monotonicity of distribution function, we have

P{|Xn − X| > ε} = E1{Xn /∈[X−ε,X+ε]} = EFX(X + ε)−EFX(X− ε) > 0.

Lemma 1.4 (Convergence in probability implies in distribution). Consider a sequence (Xn : n∈N) of random
variables and a random variable X, such that limn Xn = X in probability, then limn Xn = X in distribution.

Proof. Fix ε > 0, and consider the event En , {ω ∈Ω : |Xn − X| (ω) > ε} = {Xn /∈ [X− ε, X + ε]} ∈ F. We
further define events An(x), {Xn 6 x} and A(x), {X 6 x}, then we can write

An(x) ∩ A(x + ε) ⊆ A(x + ε), An(x) ∩ Ac(x + ε) ⊆ En,
A(x− ε) ∩ An(x) ⊆ An(x), A(x− ε) ∩ Ac

n(x) ⊆ En.
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From the above set relations, law of total probability, and union bound, we have

F(x− ε)− P(En)6 Fn(x)6 F(x + ε) + P(En).

From the convergence in probability, we have limn P(En) = 0 get

F(x− ε)6 liminf
n

Fn(x)6 limsup
n

Fn(x)6 F(x + ε).

We get the result at the continuity points of FX , since the choice of ε was arbitrary.

Theorem 1.5 (Central Limit Theorem). Consider an i.i.d. random sequence (Xn : n ∈N) with EXn = µ and
Var(Xn) = σ2, defined on the probability space (Ω,F, P). We define the n-sum as Sn = ∑n

i=1 Xi and consider a

standard normal random variable Y with density function fY(y) = 1√
2π

e−
y2
2 for all y ∈R. Then,

lim
n

Sn − nµ

σ
√

n
= Y in distribution.

Proof. The classical proof is using the characteristic functions. Let Zi ,
Xi−µ

σ for all i ∈N, then the shifted
and scaled n-sum Sn−nµ

σ
√

n = ∑n
i=1 Zi We use the third equivalence in Proposition 1.2 to show that the charac-

teristic function of converges to the characteristic function of the standard normal. We define the character-
istic functions

Φn(u), Eexp
(

ju
(Sn − nµ)

σ
√

n

)
, ΦZi (u), Eexp(juZi), ΦY(u), Eexp(juY).

We can compute the characteristic function of the standard normal as

ΦY(u) =
1√
2π

∫
y∈R

e−
u2
2 exp

(
− (y− ju)2

2

)
dy = e−

u2
2 .

Since (Zi : n ∈N) is a zero mean i.i.d. sequence, and using the Taylor expansion of the characteristic func-
tion, we have

Φn(u) =
n

∏
i=1

Eexp
(

ju
(Xi − µ)

σ
√

n

)
=

[
ΦZ1

(
u√
n

)]n
=

[
1− u2

2n
+ o

(
u2

n

)]n

.

For any u ∈R, taking limit n ∈N, we get the result.

2 Strong law of large numbers

Definition 2.1. For a random sequence (Xn : n ∈N) with bounded mean E |Xn| < ∞, we define the n-sum
as Sn , ∑n

i=1 Xi and the empirical n-mean Sn
n for each n ∈N. For each n ∈N, we define event

En , {ω ∈Ω : |Sn −ESn| > nε} ∈ F.

Theorem 2.2 (L4 strong law of large numbers). Let (Xn : n ∈N) be a sequence of pair-wise uncorrelated random
variables with bounded mean EXn and uniformly bounded fourth central moment E(Xn −EXn)4 6 B < ∞ for all
n ∈N. Then, the empirical n-mean converges to limn

ESn
n almost surely.

Proof. From the Markov’s and Minkowski’s inequality, we have P(En) 6
∑n

i=1 E(Xi−µ)4

n4ε2 6 B+µ4

n3ε2 . It follows
that the ∑n∈N P(En)< ∞, and hence by Borel Canteli Lemma, we have P{Ec

n for all but finitely many n}=
1. Since, the choice of ε was arbitrary, the result follows.

Theorem 2.3 (L2 strong law of large numbers). Let (Xn : n ∈N) be a sequence of pair-wise uncorrelated random
variables with mean EXn and uniformly bounded variance Var(Xn) 6 B < ∞ for all n ∈N. Then, the empirical
n-mean converges to limn

ESn
n almost surely.
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Proof. For each n ∈N, we define events Fn , En2 , and

Gn ,

{
max

n26k<(n+1)2
|Sk − Sn2 −E(Sk − Sn2)| > n2ε

}
=

⋃
n26k<(n+1)2

{
ω ∈Ω :

∣∣∣∣∣ k

∑
i=n2

Xi −EXi

∣∣∣∣∣ > n2ε

}
.

From the Markov’s inequality and union bound, we have

P(Fn)6
∑n2

i=1 Var(Xi)

n4ε2 6
B

n2ε2 , P(Gn)6
2n

∑
k=0

kB
n4ε

6
(2n + 1)B

n3ε
.

Therefore, ∑n∈N P(Fn) < ∞ and ∑n∈N P(Gn) < ∞, and hence by Borel Canteli Lemma, we have

lim
n

Sn2 −ESn2

n2 = lim
n

Sk − Sn2 −E(Sk − Sn2)

n2 = 0 a.s.

The result follows from the fact that for any k ∈N, there exists n ∈N such that k ∈
{

n2, . . . , (n + 1)2 − 1
}

and hence
|Sk −ESk|

k
6
(
|Sn2 −ESn2 |

n2 +
|Sk − Sn2 −E(Sk − Sn2)|

n2

)
.

Theorem 2.4 (L1 strong law of large numbers). Let (Xn : n ∈N) be a sequence of pair-wise uncorrelated random
variables such that E |Xn|6 B < ∞ for all n ∈N. Then, the empirical n-mean converges to limn

ESn
n almost surely.
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