Lecture-18: Random Processes

1 Introduction

Definition 1.1 (Random process). Let (Q),F,P) be a probability space. For an arbitrary index set T and
state space X C R, a random process is a measurable map X : () — XT. That is, for each outcome w € Q), we
have a function X(w) : T +— X called the sample path or the sample function of the process X, also written

* X(w) & (Xp(w) €EX:tET).

1.1 Classification

State space X can be countable or uncountable, corresponding to discrete or continuous valued process.
If the index set T is countable, the stochastic process is called discrete-time stochastic process or random
sequence. When the index set T is uncountable, it is called continuous-time stochastic process. The index
set T doesn’t have to be time, if the index set is space, and then the stochastic process is spatial process.
When T = R" x [0,00), stochastic process X is a spatio-temporal process.

Example 1.2. We list some examples of each such stochastic process.

i_ Discrete random sequence: brand switching, discrete time queues, number of people at bank each
day.

ii_ Continuous random sequence: stock prices, currency exchange rates, waiting time in queue of nth
arrival, workload at arrivals in time sharing computer systems.

iii. Discrete random process: counting processes, population sampled at birth-death instants, number
of people in queues.

iv_ Continuous random process: water level in a dam, waiting time till service in a queue, location of
a mobile node in a network.

1.2 Measurability

For any finite subset S C T and real vector x € RT such that x; = oo for any t ¢ S, we define a set A(x) =
{yeRT:y;<x} =X ter(—00,xt]. Then, the measurability of the random process X implies that for any
such set A(x), we have

{weQ: Xp(w) <xp,t € TY=Ner Xy H(—o00,x1] = X1 X (—00,x] = X H(A(x)) € F.
teT

Remark 1. Realization of random process at each t € T, is a random variable defined on the probability
space (Q),F,P) such that X; : O — X. This follows from the fact that for any t € T and x; € R, we can take

Boreal measurable sets )X (—o0, x¢] Xs4¢R. Then, X1 (A(y)) = X; Y (—o0,x] €.

Remark 2. The random process X can be thought of as a collection of random variables X = (X; € X?:t € T)
or an ensemble of sample paths X = (X(w) € XT : w € Q). Recall that X7 is set of all functions from the
index set T to state space X.



Example 1.3 (Bernoulli sequence). Let index set T =IN = {1,2,...} and the sample space be the col-
lection of infinite bi-variate sequences of successes (S) and failures (F) defined by Q = {S,F}N. An
outcome w € () is an infinite sequence w = (wy,wy,...) such that w, € {S,F} for each n € N. We define

the random process X : Q — {0,1} such that X(w) = (Lgsy(w1),1sy(wa),...). That is, we have
Xn(w) = Lysy(wn), X(w) = (Lgsy(wn) : 1 €N).

Hence, we can write the process as collection of random variables X = (X, € {0,1}Q :n € IN) or the
collection of sample paths X = (X(w) € {0,1}N : w € Q).

1.3 Distribution

To define a measure on a random process, we can either put a measure on sample paths, or equip the
collection of random variables with a joint measure. We are interested in identifying the joint distribution
F:RT — [0,1]. To this end, for any x € RTwe need to know

Fx(x)2P (ﬂ {weQ: X (w) < xt}> =P(( X; }(—o0,x;]) = Po X1 X (—00,xy].

teT teT teT

However, even for a simple independent process with countably infinite T, any function of the above form
would be zero if x; is finite for all t € T. Therefore, we only look at the values of F(x) when x; € R for
indices t in a finite set S and x; = oo for all t ¢ S. That is, for any finite set S C T, we focus on the product

sets of the form
A(x) £ X (—00,x] X R,
sES s¢S

where x € XT and x; = oo for t ¢ S. Recall that by definition of measurability, X~!1(A(x)) € F, and hence
Po X~ 1A(x) is well defined.

Definition 1.4 (Finite dimensional distribution). We can define a finite dimensional distribution for any
finite set S C T and x5 = {x; € R:s € S},

Fx,(xs) =P (ﬂ {weQ: Xs(w) < xs}> =P( X1 (—o0,x5]).
sES s€S

Set of all finite dimensional distributions of the stochastic process X = (X; € X :t € T) characterizes
its distribution completely. Simpler characterizations of a stochastic process X are in terms of its moments.
That is, the first moment such as mean, and the second moment such as correlations and covariance func-
tions.

mx (t) £ EX;, Rx(t,s) £ EX;Xs, Cx(t,s) 2 E(X; — mx(t))(Xs — mx(s)).

Example 1.5. Some examples of simple stochastic processes.

i. X} = Acos2mt, where A is random. The finite dimensional distribution is given by
Fx,(x) = P({Acos2ms < x5,5 € S}).
The moments are given by

my(t) = (EA)cos2mt, Rx(t,s) = (EA?)cos2mtcos2ms, Cx(t,s) = Var(A)cos2mtcos27ts.



ii- Xy = cos(27tt + ©), where © is random and uniformly distributed between (—7, 7t]. The finite
dimensional distribution is given by

Fx,(x) = P({cos(27ts + @) < x5,s € S}).

The moments are given by
1
myx =0, Rx(t,s) = EcosZn(t—s), Cx(t,s) = Rx(t,9).

ili- X, = U" for n € N, where U is uniformly distributed in the open interval (0,1).

iv. Z; = At + B where A and B are independent random variables.

1.4 Independence

Recall, given the probability space (), F, P), two events A, B € F are independent events if
P(ANB)=P(A)P(B).

Random variables X,Y defined on the above probability space, are independent random variables if for
all x,y € R

P{X(w) < x,Y(w) Sy} = P{X(w) < x}P{Y(w) <y}
A stochastic process X is said to be independent if for all finite subsets S C T, the finite collection of events
{{Xs < x5} :5 € S} are independent. That is, we have

FXS(XS) = P(Nses {Xs < xs}) = QP{XS <xs}= QFXS(XS)-

Two stochastic process X,Y for the common index set T are independent random processes if for all finite
subsets I,] C T, the following events {X; < x;,i € I'} and {Y] <Y, j€ ]} are independent. That is,

Fx,x; (x1,x) 2P ({Xi < xii € [N {Y;<yj,jeJ}) =P (Nier {X; <x;}) P (Njeg {Y; <yj}) = Fx, (x1) Fx, (x)).

Example 1.6 (Bernoulli sequence). Let the Bernoulli sequence X defined in Example [1.3]be indepen-
dent and identically distributed with P{X, =1} = p € (0,1). For any sequence x € {0,1}", we have
P{X =x} =0. Letg = (1 — p), then the probability of observing m heads and r tails is given by p"q’.
We can easily compute the mean, the auto-correlation, and the auto-covariance functions for the inde-
pendent Bernoulli process defined in Example|[1.6|as

myx(n) =EX, =p, Rx(m,n) = EXy X, = EXyEX, = p?, Cx(m,n) =0.
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