Lecture-18: Random Processes

1 Introduction

Definition 1.1 (Random process). Let (Ω, \mathcal{F}, P) be a probability space. For an arbitrary index set *T* and state space $\mathfrak{X}\subseteq\mathbb{R}$, a **random process** is a measurable map $X:\Omega\to\mathfrak{X}^T.$ That is, for each outcome $\omega\in\Omega$, we have a function $X(\omega): T \to \mathcal{X}$ called the **sample path** or the **sample function** of the process *X*, also written as

$$
X(\omega) \triangleq (X_t(\omega) \in \mathfrak{X} : t \in T).
$$

1.1 Classification

State space $\mathfrak X$ can be countable or uncountable, corresponding to discrete or continuous valued process. If the index set *T* is countable, the stochastic process is called **discrete**-time stochastic process or random sequence. When the index set *T* is uncountable, it is called **continuous**-time stochastic process. The index set *T* doesn't have to be time, if the index set is space, and then the stochastic process is spatial process. When $T = \mathbb{R}^n \times [0, \infty)$, stochastic process *X* is a spatio-temporal process.

Example 1.2. We list some examples of each such stochastic process.

- i. Discrete random sequence: brand switching, discrete time queues, number of people at bank each day.
- ii₋ Continuous random sequence: stock prices, currency exchange rates, waiting time in queue of *n*th arrival, workload at arrivals in time sharing computer systems.
- iii. Discrete random process: counting processes, population sampled at birth-death instants, number of people in queues.
- iv₋ Continuous random process: water level in a dam, waiting time till service in a queue, location of a mobile node in a network.

1.2 Measurability

For any finite subset $S \subseteq T$ and real vector $x \in \mathbb{R}^T$ such that $x_t = \infty$ for any $t \notin S$, we define a set $A(x) =$ $\{y \in \mathbb{R}^T : y_t \leq x_t\} = \mathsf{X}_{t \in T}(-\infty, x_t]$. Then, the measurability of the random process *X* implies that for any such set $A(x)$, we have

$$
\{\omega \in \Omega : X_t(\omega) \leq x_t, t \in T\} = \cap_{t \in T} X_s^{-1}(-\infty, x_t] = X^{-1} \bigtimes_{t \in T} (-\infty, x_t] = X^{-1}(A(x)) \in \mathcal{F}.
$$

Remark 1. Realization of random process at each $t \in T$, is a random variable defined on the probability space (Ω, \mathcal{F}, P) such that $X_t : \Omega \to \mathcal{X}$. This follows from the fact that for any $t \in T$ and $x_t \in \mathbb{R}$, we can take Boreal measurable sets \bigtimes ($-\infty$, x_t] \times _{s \neq t} R. Then, $X^{-1}(A(y)) = X_t^{-1}(-\infty, x_t] \in \mathcal{F}$.

Remark 2. The random process *X* can be thought of as a collection of random variables $X = (X_t \in \mathcal{X}^{\Omega}: t \in T)$ or an ensemble of sample paths $X = (X(\omega) \in \mathfrak{X}^T : \omega \in \Omega)$. Recall that \mathfrak{X}^T is set of all functions from the index set T to state space \mathfrak{X} .

Example 1.3 (Bernoulli sequence). Let index set $T = \mathbb{N} = \{1, 2, ...\}$ and the sample space be the collection of infinite bi-variate sequences of successes (S) and failures (F) defined by $\Omega = \{S, F\}^N$. An outcome *ω* ∈ Ω is an infinite sequence *ω* = (*ω*1,*ω*2,. . .) such that *ωⁿ* ∈ {*S*, *F*} for each *n* ∈ **N**. We define the random process $X:\Omega\to\{0,1\}^{\mathbb{N}}$ such that $X(\omega)=(\mathbb{1}_{\{S\}}(\omega_1),\mathbb{1}_{\{S\}}(\omega_2),\dots).$ That is, we have

$$
X_n(\omega) = \mathbb{1}_{\{S\}}(\omega_n), \qquad X(\omega) = (\mathbb{1}_{\{S\}}(\omega_n) : n \in \mathbb{N}).
$$

Hence, we can write the process as collection of random variables $X = (X_n \in \{0,1\}^{\Omega} : n \in \mathbb{N})$ or the collection of sample paths $X = (X(\omega) \in \{0,1\}^{\mathbb{N}} : \omega \in \Omega)$.

1.3 Distribution

To define a measure on a random process, we can either put a measure on sample paths, or equip the collection of random variables with a joint measure. We are interested in identifying the joint distribution *F* : $\mathbb{R}^T \rightarrow [0, 1]$. To this end, for any $x \in \mathbb{R}^T$ we need to know

$$
F_X(x) \triangleq P\left(\bigcap_{t\in T} \{\omega \in \Omega : X_t(\omega) \leq x_t\}\right) = P(\bigcap_{t\in T} X_t^{-1}(-\infty, x_t]) = P \circ X^{-1} \underset{t\in T}{\times} (-\infty, x_t].
$$

However, even for a simple independent process with countably infinite *T*, any function of the above form would be zero if x_t is finite for all $t \in T$. Therefore, we only look at the values of $F(x)$ when $x_t \in \mathbb{R}$ for indices *t* in a finite set *S* and $x_t = \infty$ for all $t \notin S$. That is, for any finite set $S \subseteq T$, we focus on the product sets of the form

$$
A(x) \triangleq \bigtimes_{s \in S} (-\infty, x_s] \bigtimes_{s \notin S} \mathbb{R},
$$

where $x \in \mathfrak{X}^T$ and $x_t = \infty$ for $t \notin S$. Recall that by definition of measurability, $X^{-1}(A(x)) \in \mathcal{F}$, and hence $P \circ X^{-1}A(x)$ is well defined.

Definition 1.4 (Finite dimensional distribution). We can define a **finite dimensional distribution** for any finite set *S* \subseteq *T* and $x_S = \{x_s \in \mathbb{R} : s \in S\}$,

$$
F_{X_S}(x_S) \triangleq P\left(\bigcap_{s\in S} \{\omega \in \Omega : X_s(\omega) \leq x_s\}\right) = P(\bigcap_{s\in S} X_s^{-1}(-\infty, x_s]).
$$

Set of all finite dimensional distributions of the stochastic process $X = (X_t \in \mathfrak{X}^{\Omega}: t \in T)$ characterizes its distribution completely. Simpler characterizations of a stochastic process *X* are in terms of its moments. That is, the first moment such as mean, and the second moment such as correlations and covariance functions.

$$
m_X(t) \triangleq \mathbb{E} X_t, \qquad R_X(t,s) \triangleq \mathbb{E} X_t X_s, \qquad C_X(t,s) \triangleq \mathbb{E} (X_t - m_X(t))(X_s - m_X(s)).
$$

Example 1.5. Some examples of simple stochastic processes.

i. $X_t = A \cos 2\pi t$, where *A* is random. The finite dimensional distribution is given by

$$
F_{X_S}(x) = P(\lbrace A\cos 2\pi s \leq x_s, s \in S \rbrace).
$$

The moments are given by

 $m_X(t) = (EA)\cos 2\pi t$, $R_X(t,s) = (EA^2)\cos 2\pi t \cos 2\pi s$, $C_X(t,s) = \text{Var}(A)\cos 2\pi t \cos 2\pi s$.

ii *X*_{*t*} = cos(2 π *t* + Θ), where Θ is random and uniformly distributed between ($-\pi$, π). The finite dimensional distribution is given by

$$
F_{X_S}(x) = P(\{\cos(2\pi s + \Theta) \le x_s, s \in S\}).
$$

The moments are given by

$$
m_X = 0,
$$
 $R_X(t,s) = \frac{1}{2}\cos 2\pi (t-s),$ $C_X(t,s) = R_X(t,s).$

iii₋ $X_n = U^n$ for $n \in \mathbb{N}$, where *U* is uniformly distributed in the open interval $(0,1)$.

iv $Z_t = At + B$ where *A* and *B* are independent random variables.

1.4 Independence

Recall, given the probability space (Ω, \mathcal{F}, P) , two events $A, B \in \mathcal{F}$ are **independent events** if

$$
P(A \cap B) = P(A)P(B).
$$

Random variables *X*,*Y* defined on the above probability space, are **independent random variables** if for all $x, y \in \mathbb{R}$

$$
P\{X(\omega) \leq x, Y(\omega) \leq y\} = P\{X(\omega) \leq x\} P\{Y(\omega) \leq y\}.
$$

A stochastic process *X* is said to be **independent** if for all finite subsets $S \subseteq T$, the finite collection of events $\{\{X_s \le x_s\} : s \in S\}$ are independent. That is, we have

$$
F_{X_S}(x_S) = P(\cap_{s \in S} \{X_s \leq x_s\}) = \prod_{s \in S} P\{X_s \leq x_s\} = \prod_{s \in S} F_{X_s}(x_s).
$$

Two stochastic process *X*,*Y* for the common index set *T* are **independent random processes** if for all finite subsets $I, J \subseteq T$, the following events $\{X_i \leq x_i, i \in I\}$ and $\{Y_j \leq y_j, j \in J\}$ are independent. That is,

$$
F_{X_I,X_J}(x_I,x_J) \triangleq P(\{X_i \leq x_i, i \in I\} \cap \{Y_j \leq y_j, j \in J\}) = P(\bigcap_{i \in I} \{X_i \leq x_i\}) P(\bigcap_{j \in J} \{Y_j \leq y_j\}) = F_{X_I}(x_I) F_{X_J}(x_J).
$$

Example 1.6 (Bernoulli sequence). Let the Bernoulli sequence *X* defined in Example [1.3](#page-1-0) be independent and identically distributed with $P\{X_n = 1\} = p \in (0,1)$. For any sequence $x \in \{0,1\}^{\mathbb{N}}$, we have $P\{X = x\} = 0$. Let $q \triangleq (1 - p)$, then the probability of observing *m* heads and *r* tails is given by p^mq^r . We can easily compute the mean, the auto-correlation, and the auto-covariance functions for the independent Bernoulli process defined in Example [1.6](#page-2-0) as

$$
m_X(n) = \mathbb{E}X_n = p, \qquad R_X(m,n) = \mathbb{E}X_m X_n = \mathbb{E}X_m \mathbb{E}X_n = p^2, \qquad C_X(m,n) = 0.
$$