
Lecture-18: Random Processes

1 Introduction

Definition 1.1 (Random process). Let (Ω,F, P) be a probability space. For an arbitrary index set T and
state space X⊆R, a random process is a measurable map X : Ω→XT . That is, for each outcome ω ∈Ω, we
have a function X(ω) : T 7→ X called the sample path or the sample function of the process X, also written
as

X(ω), (Xt(ω) ∈ X : t ∈ T).

1.1 Classification

State space X can be countable or uncountable, corresponding to discrete or continuous valued process.
If the index set T is countable, the stochastic process is called discrete-time stochastic process or random
sequence. When the index set T is uncountable, it is called continuous-time stochastic process. The index
set T doesn’t have to be time, if the index set is space, and then the stochastic process is spatial process.
When T = Rn × [0,∞), stochastic process X is a spatio-temporal process.

Example 1.2. We list some examples of each such stochastic process.

i Discrete random sequence: brand switching, discrete time queues, number of people at bank each
day.

ii Continuous random sequence: stock prices, currency exchange rates, waiting time in queue of nth
arrival, workload at arrivals in time sharing computer systems.

iii Discrete random process: counting processes, population sampled at birth-death instants, number
of people in queues.

iv Continuous random process: water level in a dam, waiting time till service in a queue, location of
a mobile node in a network.

1.2 Measurability

For any finite subset S ⊆ T and real vector x ∈ RT such that xt = ∞ for any t /∈ S, we define a set A(x) ={
y ∈RT : yt 6 xt

}
=×t∈T(−∞, xt]. Then, the measurability of the random process X implies that for any

such set A(x), we have

{ω ∈Ω : Xt(ω)6 xt, t ∈ T} = ∩t∈TX−1
s (−∞, xt] = X−1×

t∈T
(−∞, xt] = X−1(A(x)) ∈ F.

Remark 1. Realization of random process at each t ∈ T, is a random variable defined on the probability
space (Ω,F, P) such that Xt : Ω→ X. This follows from the fact that for any t ∈ T and xt ∈ R, we can take
Boreal measurable sets×(−∞, xt]×s 6=t R. Then, X−1(A(y)) = X−1

t (−∞, xt] ∈ F.

Remark 2. The random process X can be thought of as a collection of random variables X = (Xt ∈XΩ : t ∈ T)
or an ensemble of sample paths X = (X(ω) ∈ XT : ω ∈ Ω). Recall that XT is set of all functions from the
index set T to state space X.
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Example 1.3 (Bernoulli sequence). Let index set T = N = {1,2, . . .} and the sample space be the col-
lection of infinite bi-variate sequences of successes (S) and failures (F) defined by Ω = {S, F}N. An
outcome ω ∈Ω is an infinite sequence ω = (ω1,ω2, . . . ) such that ωn ∈ {S, F} for each n ∈N. We define
the random process X : Ω→ {0,1}N such that X(ω) = (1{S}(ω1),1{S}(ω2), . . . ). That is, we have

Xn(ω) = 1{S}(ωn), X(ω) = (1{S}(ωn) : n ∈N).

Hence, we can write the process as collection of random variables X = (Xn ∈ {0,1}Ω : n ∈N) or the
collection of sample paths X = (X(ω) ∈ {0,1}N : ω ∈Ω).

1.3 Distribution

To define a measure on a random process, we can either put a measure on sample paths, or equip the
collection of random variables with a joint measure. We are interested in identifying the joint distribution
F : RT → [0,1]. To this end, for any x ∈RTwe need to know

FX(x), P

(⋂
t∈T
{ω ∈Ω : Xt(ω)6 xt}

)
= P(

⋂
t∈T

X−1
t (−∞, xt]) = P ◦ X−1×

t∈T
(−∞, xt].

However, even for a simple independent process with countably infinite T, any function of the above form
would be zero if xt is finite for all t ∈ T. Therefore, we only look at the values of F(x) when xt ∈ R for
indices t in a finite set S and xt = ∞ for all t /∈ S. That is, for any finite set S ⊆ T, we focus on the product
sets of the form

A(x),×
s∈S

(−∞, xs]×
s/∈S

R,

where x ∈ XT and xt = ∞ for t /∈ S. Recall that by definition of measurability, X−1(A(x)) ∈ F, and hence
P ◦ X−1 A(x) is well defined.

Definition 1.4 (Finite dimensional distribution). We can define a finite dimensional distribution for any
finite set S ⊆ T and xS = {xs ∈R : s ∈ S},

FXS(xS), P

(⋂
s∈S
{ω ∈Ω : Xs(ω)6 xs}

)
= P(

⋂
s∈S

X−1
s (−∞, xs]).

Set of all finite dimensional distributions of the stochastic process X = (Xt ∈ XΩ : t ∈ T) characterizes
its distribution completely. Simpler characterizations of a stochastic process X are in terms of its moments.
That is, the first moment such as mean, and the second moment such as correlations and covariance func-
tions.

mX(t), EXt, RX(t, s), EXtXs, CX(t, s), E(Xt −mX(t))(Xs −mX(s)).

Example 1.5. Some examples of simple stochastic processes.

i Xt = Acos2πt, where A is random. The finite dimensional distribution is given by

FXS(x) = P ({Acos2πs ≤ xs, s ∈ S}) .

The moments are given by

mX(t) = (EA)cos2πt, RX(t, s) = (EA2)cos2πtcos2πs, CX(t, s) = Var(A)cos2πtcos2πs.
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ii Xt = cos(2πt + Θ), where Θ is random and uniformly distributed between (−π,π]. The finite
dimensional distribution is given by

FXS(x) = P ({cos(2πs + Θ) ≤ xs, s ∈ S}) .

The moments are given by

mX = 0, RX(t, s) =
1
2

cos2π(t− s), CX(t, s) = RX(t, s).

iii Xn = Un for n ∈N, where U is uniformly distributed in the open interval (0,1).

iv Zt = At + B where A and B are independent random variables.

1.4 Independence

Recall, given the probability space (Ω,F, P), two events A, B ∈ F are independent events if

P(A ∩ B) = P(A)P(B).

Random variables X,Y defined on the above probability space, are independent random variables if for
all x,y ∈R

P{X(ω)6 x,Y(ω)6 y} = P{X(ω)6 x}P{Y(ω)6 y}.

A stochastic process X is said to be independent if for all finite subsets S⊆ T, the finite collection of events
{{Xs 6 xs} : s ∈ S} are independent. That is, we have

FXS(xS) = P(∩s∈S {Xs 6 xs}) = ∏
s∈S

P{Xs 6 xs} = ∏
s∈S

FXs(xs).

Two stochastic process X,Y for the common index set T are independent random processes if for all finite
subsets I, J ⊆ T, the following events {Xi 6 xi, i ∈ I} and

{
Yj 6 yj, j ∈ J

}
are independent. That is,

FXI ,XJ (xI , xJ), P
(
{Xi 6 xi, i ∈ I} ∩

{
Yj 6 yj, j ∈ J

})
= P (∩i∈I {Xi 6 xi})P

(
∩j∈J

{
Yj 6 yj

})
= FXI (xI)FXJ (xJ).

Example 1.6 (Bernoulli sequence). Let the Bernoulli sequence X defined in Example 1.3 be indepen-
dent and identically distributed with P{Xn = 1} = p ∈ (0,1). For any sequence x ∈ {0,1}N, we have
P{X = x} = 0. Let q , (1− p), then the probability of observing m heads and r tails is given by pmqr.
We can easily compute the mean, the auto-correlation, and the auto-covariance functions for the inde-
pendent Bernoulli process defined in Example 1.6 as

mX(n) = EXn = p, RX(m,n) = EXmXn = EXmEXn = p2, Cx(m,n) = 0.
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