
Lecture-19: Tractable Random Processes

1 Examples of Tractable Stochastic Processes

In general, it is very difficult to characterize a stochastic process completely in terms of its finite dimensional
distribution. However, we have listed few analytically tractable examples below, where we can completely
characterize the stochastic process.

We will consider the probability space (Ω,F, P), and a random process X : Ω→ XT for index set T and
state space X⊆R.

1.1 Independent and identically distributed (IID) processes

Definition 1.1 (IID process). A random process X : Ω→XT is an independent and identically distributed
(iid) random process with the common distribution F(x), if for any finite S ⊆ T and a real vector xS ∈ RS

we can write the finite dimensional distribution for this process as

FS(xS) = P ({Xs(ω)6 xs, s ∈ S}) = ∏
s∈S

F(xs).

Remark 1. It’s easy to verify that the first and the second moments are independent of time indices. That is,
if 0 ∈ T then Xt = X0 in distribution, and we have

mX = EX0, RX(t, s) = (EX2
0)1{t=s} + m2

X1{t 6=s}, CX(T, s) = Var(X0)1{t=s}.

1.2 Stationary processes

Definition 1.2 (Stationary process). We consider the index set T ⊆ R. A stochastic process X : Ω→ XT is
stationary if all finite dimensional distributions are shift invariant. That is, for any finite S ⊆ T and t > 0,
we have

FS(xS) = P({Xs(ω)6 xs, s ∈ S}) = P({Xs+t(ω)6 xs, s ∈ S}) = Ft+S(xS).

Remark 2. That is, for any finite n ∈N and t > 0, the random vectors (Xs1 , . . . , Xsn) and (Xs1+t, . . . , Xs1+t)
have the identical joint distribution for all s1 6 . . . 6 sn.

Lemma 1.3. Any i.i.d. process with index set T ⊆R is stationary.

Proof. Let X : Ω→ XT be an i.i.d. random process, where T ⊆ R. Then, for any finite index subset
S ⊆ T, t ∈ T and xS ∈RS, we can write

FS(xS) = P({Xs 6 xs, s ∈ S}) = ∏
s∈S

P{Xs 6 xs} = ∏
s∈S

P{Xs+t 6 xs} = P{Xt+u 6 xu,u ∈ S} = Ft+S(xS).

First equality follows from the definition, the second from the independence of process X, the third
from the identical distribution for the process X. In particular, we have shown that process X is also
stationary.

Remark 3. For a stationary stochastic process, all the existing moments are shift invariant when they exist.
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Definition 1.4. A second order stochastic process X has finite auto-correlation RX(t, t) < ∞ for all indices
t ∈ T.

Remark 4. This implies RX(t1, t2)<∞ by Cauchy-Schwartz inequality, and hence the mean, auto-correlation,
and the auto-covariance functions are well defined and finite.
Remark 5. For a stationary process X, we have Xt = X0 and (Xt, Xs) = (Xt−s, X0) in distribution. Therefore,
for a second order stationary process X, we have

mX = EX0, RX(t, s) = RX(t− s,0) = EXt−sX0, CX(t− s,0) = RX(t− s,0)−m2
X .

Definition 1.5. A random process X is wide sense stationary if

1. mX(t) = mX(t + s) for all s, t ∈ T, and

2. RX(t, s) = Rx(t + u, s + u) for all s, t,u ∈ T.

Remark 6. It follows that a second order stationary stochastic process X, is wide sense stationary. A second
order wide sense stationary process is not necessarily stationary. We can similarly define join stationarity
and joint wide sense stationarity for two stochastic processes X and Y.

Example 1.6 (Gaussian process). Let X : Ω→ RR be a zero-mean continuous-time Gaussian process,
defined by its finite dimensional distributions. In particular, for any finite S⊂R, column vector xS ∈RS,
and the covariance matrix CS , ExSxT

S , the finite-dimensional density is given by

fS(xS) =
1

(2π)|S|/2
√

det(CS)
exp

(
−1

2
xT

S C−1
S xS

)
.

Theorem 1.7. A wide sense stationary Gaussian process is stationary.

Proof. For Gaussian random processes, first and the second moment suffice to get any finite dimen-
sional distribution. Let X be a wide sense stationary Gaussian process and let S⊆R be finite. From the
wide sense stationarity of X, we have EXS = 0 and

EXsXu = Cs−u, for all s,u ∈ S.

This means that CS = Ct+S, and the result follows.

1.3 Markov processes

A stochastic process X is Markov if conditioned on the present state, future is independent of the past.
We denote the history of the process until time t as Ft = σ(Xs, s 6 t). That is, for any ordered index set T
containing any two indices u > t, we have

P({Xu 6 xu}
∣∣ Ft) = P({Xu 6 xu}

∣∣ σ(Xt)).

The range of the process is called the state space. We next re-write the Markov property more explicitly for
the process X. For all x,y ∈ X, finite set S ⊆ T such that maxS < t < u, and HS = ∩s∈S {Xs 6 xs} ∈ Ft, we
have

P({Xu 6 y}
∣∣ HS ∩ {Xt 6 x}) = P({Xu 6 y}

∣∣ {Xt 6 x}).
When the state space X is countable, we can write HS = ∩s∈S {Xs = xs} and the Markov property can be
written as

P({Xu = y}
∣∣ HS ∩ {Xt = x}) = P({Xu = xu}

∣∣ {Xt = x}).
In addition, when the index set is countable, i.e. T = Z+, then we can take past as S = {0, . . . ,n− 1}, present
as instant n, and the future as n + 1. Then, the Markov property can be written as

P({Xn+1 = y}
∣∣ Hn−1 ∩ {Xn = x}) = P({Xn+1 = y}

∣∣ {Xn = x}),

for all n ∈Z+, x,y ∈ X. We will study this process in detail in coming lectures.
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1.4 Lévy processes

A right continuous with left limits stochastic process X = (Xt ∈R : t ∈ T ⊆R+) with X0 = 0 almost surely,
is a Lévy process if the following conditions hold.

(L1) The increments are independent. For any instants 0 ≤ t1 < t2 < · · · < tn < ∞, the random variables
Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn − Xtn−1 are independent.

(L2) The increments are stationary. For any instants 0 ≤ t1 < t2 < · · · < tn < ∞ and time-difference s > 0,
the random vectors (Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1) and (Xs+t2 −Xs+t1 , Xs+t3 −Xs+t2 , . . . , Xs+tn −
Xs+tn−1) are equal in distribution.

(L3) Continuous in probability. For any ε > 0 and t ≥ 0 it holds that limh→0 P(|Xt+h − Xt| > ε) = 0.

Example 1.8. Two examples of Lévy processes are Poisson process and Wiener process. The distribution
of Poisson process at time t is Poisson with rate λt and the distribution of Wiener process at time t is
zero mean Gaussian with variance t.
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