
Lecture-20: Discrete Time Markov Chains

1 Introduction

We have seen that iid sequences are easiest discrete time random processes. However, they don’t capture
correlation well.

Definition 1.1. For a state space X⊆R and the random sequence X : Ω→ XZ+ , we define the history until
time n ∈Z+ as Fn = σ(X1, . . . , Xn).

Remark 1. Recall that the event space Fn is generated by the historical events of the form

Hn = ∩n
i=1 {Xi 6 xi} , where x ∈Rn.

Remark 2. When the state space X is countable, the event space Fn is generated by the historical events of
the form

Hn = ∩n
i=1 {Xi = xi} , where x ∈ Xn.

Definition 1.2 (DTMC). For a countable set X, a discrete-valued random sequence (Xn ∈ XΩ : n ∈ Z+) is
called a discrete time Markov chain (DTMC) if for all positive integers n ∈Z+, all states x,y ∈ X, and any
historical event Hn−1 = ∩n−1

m=0 {Xm = xm} ∈ Fn for (x0, . . . , xn−1) ∈ Xn, the process X satisfies the Markov
property

P({Xn+1 = y}
∣∣ Hn−1 ∩ {Xn = x}) = P({Xn+1 = y}

∣∣ {Xn = x}).

The probability of a discrete time Markov chain X being in state y ∈ X at time n + 1 from a state x ∈ X at
time n, is determined by the transition probability denoted by

pxy(n), P({Xn+1 = y}
∣∣ {Xn = x}).

The set X is called the state space of the Markov chain. The transition probability matrix at time n is
denoted by P(n) ∈ [0,1]X×X, such that Pxy(n) = pxy(n).

Remark 3. We observe that each row Px(n) = (pxy(n) : y ∈ X) is the conditional distribution of Xn+1 given
Xn = x.

Definition 1.3 (Random walk). Consider the state space X = Rd, and the countable index set T = Z+.
Consider the random process X : Ω→ XZ+ be an be an independent (not necessarily identical) sequence.
Let S0 = 0 and Sn , ∑n

i=1 Xi for all n ∈Z+, then the process S : Ω→ XZ+ is called a random walk.

Remark 4. We can think of Sn as the random location of a particle after n steps, where the particle starts
from origin and takes steps of size Xi at the ith step.

Theorem 1.4 (Random walk). For a random walk (Sn : n ∈N) with independent step-size sequence X, the
following are true.

i The first two moments are ESn = ∑n
i=1 EXi and Var[Sn] = ∑n

i=1 Var[Xi].

ii Random walk is non-stationary with independent increments. The disjoint increments are stationary if the
step-size sequence X is identically distributed.
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iii Random walk is a Markov sequence.

Proof. Results follow from the independence of the step-size sequence X.

i Follows from the linearity of expectation and independence of step sizes.

ii Since the mean is time dependent, random walk is non-stationary process. Independence of in-
crements follows from the independence of step sizes. That is, since Fn = σ(S0,S1, . . . ,Sn) =
σ(S0, X1, . . . , Xn) and the collection (Xn+1, . . . , Xm) is independent of σ(S0, X1, . . . , Xn) for all m >
n. Since Sm − Sn = Xn+1 + · · · + Xm ∈ σ(Xn+1, . . . , Xm), we have the independent increments.
When the step-sizes are also identically distributed, the joint distributions of (X1, . . . , Xm−n) and
(Xn+1, . . . , Xm) are identical. This implies the stationarity of increments for i.i.d. step-sizes.

iii Given the historical event Hn−1 , ∩n−1
k=1 {Sk 6 sk} and the current state {Sn 6 sn}, we can write the

conditional probability

P({Sn+1 6 sn+1}
∣∣ Hn−1 ∩ {Sn 6 sn}) = P({Xn+1 6 sn+1 − Sn}

∣∣ Hn−1 ∩ {Sn 6 sn})
= P({Sn+1 6 sn+1}

∣∣ {Sn 6 sn}).

The equality in the second line follows from the independence of the step-size sequence. In par-
ticular, from the independence of Xn+1 from the collection σ(S0, X1, . . . , Xn) = σ(S0,S1, . . . ,Sn). For
the countable state space X, an given the historical event Hn−1 , ∩n−1

k=1 {Sk = sk} and the current
state {Sn = sn}, we can write the conditional probability

P({Sn+1 = sn+1}
∣∣ Hn−1 ∩ {Sn = sn}) = P({Xn+1 = sn+1 − Sn}

∣∣ Hn−1 ∩ {Sn = sn})
= P({Sn+1 = sn+1}

∣∣ {Sn = sn}) = P{Xn+1 = sn+1 − sn} .

Definition 1.5. For all states x,y ∈X, a matrix A ∈RX×X
+ with non-negative entries is called sub-stochastic

if the row-sum ∑y∈X axy 6 1 for all rows x ∈ X. If the above property holds with equality for all rows, then
it is called a stochastic matrix. If matrices A and AT are both stochastic, then the matrix A is called doubly
stochastic.

Remark 5. We make the following observations for the stochastic matrices.

i Every probability transition matrix P(n) is a stochastic matrix.

ii All the entries of a sub-stochastic matrix lie in [0,1].

iii Each row of the stochastic matrix A ∈RX×X
+ is probability mass function over the state space X.

iv Every finite stochastic matrix has a right eigenvector with unit eigenvalue. This can be observed by
taking 1T =

[
1 . . . 1

]
to be an all-one vector of length |X|. Then we see that A1 = 1, since for each

x ∈ X

(A1)x = ∑
y∈X

axy1y =
1
n ∑

y∈X
axy = 1x.

v Every finite doubly stochastic matrix has a left and right eigenvector with unit eigenvalue. This follows
from the fact that finite stochastic matrices A and AT have a common right eigenvector 1. It follows
that A has a left eigenvector 1T .

vi For a probability transition matrix P(n), we have

∑
y∈X

f (y)pxy(n) = E[ f (Xn+1)
∣∣ Xn = x].
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2 Homogeneous Markov chain

In general, not much can be said about Markov chains with index dependent transition probabilities.
Hence, we consider the simpler case where the transition probabilities pxy(n) = pxy are independent of
the index. We call such DTMC as homogeneous and call the linear operator P = (pxy : x,y ∈ X) the transi-
tion matrix.

Example 2.1 (Integer random walk). For a one-dimensional integer valued random walk X : Ω→ZN

with i.i.d. unit step size sequence Z : Ω→ {−1,1}N such that P{Z1 = 1} = p, the following are true.

i The transition operator P ∈ [0,1]Z+×Z+ is given by the entries

pxy = p1{y=x+1} + (1− p)1{y=x−1}.

ii Number of positive steps after n steps is Binomial (n, p).

iii P{Xn = k} = ( n
(n+k)/2)p(n+k)/2q(n−k)/2 for n + k even, and 0 otherwise.

Example 2.2 (Sequence of experiments). Consider a random sequence of experiments, where the nth
outcome is denoted by Xn, such that each experiment has two possible outcomes in X = {S, F}. We
assume that it takes unit time to perform each experiment.

Let p,q ∈ [0,1]. Given the outcome was S, the probability of next outcome being S is 1− p. Similarly,
given the outcome was F, the probability of next outcome being F is 1− q. We can see that X = (Xn :
n ∈Z+) is homogeneous Markov chain, with probability transition matrix

P =

[
1− p p

q 1− q

]
.

We denote the conditional distribution of Xn+1 given X0 = S by νn+1, and the conditional distribution
of Xn+1 given X0 = F by µn+1. That is,

νn =
[
P({Xn = S}

∣∣ {X0 = S}) P({Xn = F}
∣∣ {X0 = S})

]
,

µn =
[
P({Xn = S}

∣∣ {X0 = F}) P({Xn = F}
∣∣ {X0 = F})

]
.

Let π0 be the initial distribution on the experiment outcome, and πn be the distribution of the experi-
ment outcome at time n. Then, we can write

πn(S), P{Xn = S} = P({Xn = S}
∣∣ {X0 = S})π0(S) + P({Xn = S}

∣∣ {X0 = F})π0(F)

= νn(S)π0(S) + µn(S)π0(F).

Similarly, we can write πn(F) = νn(F)π0(S) + µn(F)π0(F). That is, we can write

πn ,
[
πn(S) πn(F)

]
=

[
π0(S) π0(F)

][νn(S) νn(F)
µn(S) µn(F)

]
= π0

[
νn
µn

]
.

That is to compute the unconditional distribution of Xn, given initial distribution π0, we need to com-
pute conditional distributions νn and µn. We can see that

ν1 =
[
1− p p

]
, ν2 =

[
(1− p)2 + pq (1− p)p + p(1− q)

]
,

µ1 =
[
q 1− q

]
, µ2 =

[
q(1− p) + (1− q)q (1− q)2 + qp

]
.

This method of direct computation can quickly become too cumbersome.
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