Lecture-20: Discrete Time Markov Chains

1 Introduction

We have seen that iid sequences are easiest discrete time random processes. However, they don’t capture
correlation well.

Definition 1.1. For a state space X C R and the random sequence X : QO — X%+, we define the history until
timen € Z; asF, =o0(Xq,...,Xn).

Remark 1. Recall that the event space J;, is generated by the historical events of the form
H, =N, {X; <x;}, where x € R".

Remark 2. When the state space X is countable, the event space F;, is generated by the historical events of
the form
H, =N, {X;=1x;}, wherex € X".

Definition 1.2 (DTMC). For a countable set X, a discrete-valued random sequence (X, € X?:n € Z,) is
called a discrete time Markov chain (DTMCQ) if for all positive integers n € Z, all states x,y € X, and any
historical event H,,_1 = ﬁfn_:lo {Xm =xm} € Fy for (xo,...,x,-1) € X", the process X satisfies the Markov
property

p({Xn-i-l :]/} ‘ Hy 1 N{Xy=x})= P({Xn+1 :.'/} | {Xn = x})
The probability of a discrete time Markov chain X being in state y € X at time n + 1 from a state x € X at
time 7, is determined by the transition probability denoted by

pry(n) £ P({Xu1 =y} | {Xu =x}).

The set X is called the state space of the Markov chain. The transition probability matrix at time # is
denoted by P(n) € [0,1]X*%, such that Py, (n) = px,(n).

Remark 3. We observe that each row Py(n) = (pxy(n) : y € X) is the conditional distribution of X, given
X, = x.

Definition 1.3 (Random walk). Consider the state space X = R?, and the countable index set T = Z.
Consider the random process X : QO — X%+ be an be an independent (not necessarily identical) sequence.
LetSg=0and S, £ " 1 X;forall n € Z,, then the process S: () — X%+ is called a random walk.

Remark 4. We can think of S, as the random location of a particle after n steps, where the particle starts
from origin and takes steps of size X; at the ith step.

Theorem 1.4 (Random walk). For a random walk (S, : n € IN) with independent step-size sequence X, the
following are true.

i_ The first two moments are ES,, =Y.' { EX; and Var[S,] =Y/ ; Var[X;].

ii- Random walk is non-stationary with independent increments. The disjoint increments are stationary if the
step-size sequence X is identically distributed.



iii_ Random walk is a Markov sequence.
Proof. Results follow from the independence of the step-size sequence X.
i Follows from the linearity of expectation and independence of step sizes.

ii_ Since the mean is time dependent, random walk is non-stationary process. Independence of in-
crements follows from the independence of step sizes. That is, since ¥, = 0(Sy,S1,...,5,) =
o(So,X1,...,X,) and the collection (Xj,11,...,X) is independent of ¢ (S, X3, ...,X,) for all m >
n. Since Sy, — Sy = X1 + -+ + X € 0(Xy41,...,Xm), we have the independent increments.
When the step-sizes are also identically distributed, the joint distributions of (Xj,..., X;u—») and
(Xp+1,---,Xm) are identical. This implies the stationarity of increments for i.i.d. step-sizes.

iii- Given the historical event H,_1 = M_] {Sj < s} and the current state {S, < s, }, we can write the
conditional probability

P({Spt1 <spt1} | Huo1 N {Sn <8n}) = P({Xps1 < Sns1— Sn} | Hue1 N {Sn <su})
P({Sut1 <su1} | {Sn <sn})-

The equality in the second line follows from the independence of the step-size sequence. In par-
ticular, from the independence of X, 1 from the collection ¢ (Sp, X1, ...,Xu) = 0(So,51,...,Sn). For
the countable state space X, an given the historical event H, 1 = ﬁ]’(’;ll {Sk = s¢} and the current
state {S, = s, }, we can write the conditional probability

P({Sn+1=snt1} | Hy—10{Sn =sn}) = P({Xnt1 =5p11 — Su} | Hy—1N{Sp =sn})
=P({Sn+1="sn+1} ’ {Sn=sn}) = P{Xnt1 =5n+1 —sn}.

Definition 1.5. For all states x,y € X, a matrix A € ]R?f *X with non-negative entries is called sub-stochastic
if the row-sum Y c 4xy < 1 for all rows x € X. If the above property holds with equality for all rows, then

it is called a stochastic matrix. If matrices A and AT are both stochastic, then the matrix A is called doubly
stochastic.

Remark 5. We make the following observations for the stochastic matrices.
i- Every probability transition matrix P(n) is a stochastic matrix.
ii- All the entries of a sub-stochastic matrix lie in [0,1].
iii. Each row of the stochastic matrix A € ]R?fx * is probability mass function over the state space X.

iv_ Every finite stochastic matrix has a right eigenvector with unit eigenvalue. This can be observed by

taking 17 = [1 ... 1] to be an all-one vector of length |X|. Then we see that A1 = 1, since for each
xeX
(Al)y =) ayly=- Z fyy = 1.
yeX /ex

v_ Every finite doubly stochastic matrix has a left and right eigenvector with unit eigenvalue. This follows
from the fact that finite stochastic matrices A and AT have a common right eigenvector 1. It follows
that A has a left eigenvector 17.

vi_ For a probability transition matrix P(n), we have

Z fly ny E[f(Xn41) ‘ X = x].

yeX



2 Homogeneous Markov chain

In general, not much can be said about Markov chains with index dependent transition probabilities.
Hence, we consider the simpler case where the transition probabilities pyy (1) = pxy are independent of
the index. We call such DTMC as homogeneous and call the linear operator P = (pyy : x,y € X) the transi-
tion matrix.

Example 2.1 (Integer random walk). For a one-dimensional integer valued random walk X : QO — ZN
with 7.i.d. unit step size sequence Z : () — {—1,1}]N such that P{Z; = 1} = p, the following are true.

Z+ ><Z+

i- The transition operator P € [0,1] is given by the entries

Pry = Pliy=xy1y + (1 = p)ly—s_1}-

ii- Number of positive steps after n steps is Binomial (1, p).

iii- P{X, =k} = ((nf;c)/z)p(”k)/zq(”_k)/z for n + k even, and 0 otherwise.

Example 2.2 (Sequence of experiments). Consider a random sequence of experiments, where the nth
outcome is denoted by X, such that each experiment has two possible outcomes in X = {S,F}. We
assume that it takes unit time to perform each experiment.

Let p,q € [0,1]. Given the outcome was S, the probability of next outcome being S is 1 — p. Similarly,
given the outcome was F, the probability of next outcome being F is 1 — q. We can see that X = (X :
n € Z, ) is homogeneous Markov chain, with probability transition matrix

1—p P}
p= .
[ 9 1-—9q

We denote the conditional distribution of X;, 1 given Xy = S by v,,11, and the conditional distribution
of X, +1 given Xog = F by py,41. That s,

va=[PUXy =S} | {Xo=5}) PUXu=F} [{X0=5})],
pn = [P({Xu =S} | {Ko=F}) P({Xu=F} | {Xo=F}).

Let g be the initial distribution on the experiment outcome, and 7t,, be the distribution of the experi-
ment outcome at time n. Then, we can write

7n(S) 2 P{Xn = S} = P({Xn = S} | {Xo =S})70(S) + P({Xyn = S} | {Xo = F})mo(F)
= vn(8)710(S) + pn(S) 700 (F)-

Similarly, we can write 77, (F) = vy, (F)7o(S) 4 pn(F) o (F). That is, we can write

2 () (D) = [mo(s) mo(E)] |18 B = ]

That is to compute the unconditional distribution of X, given initial distribution 7y, we need to com-
pute conditional distributions v, and y,,. We can see that

n=[1-p p], n=[1-p?+ps A-pp+p1-9)],
m=1[q 1-q], w=g1-p)+0-q)q 1—-q)*+qp].

This method of direct computation can quickly become too cumbersome.
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