Lecture-20: Discrete Time Markov Chains

1 Introduction

We have seen that iid sequences are easiest discrete time random processes. However, they don't capture correlation well.

Definition 1.1. For a state space $X \subseteq \mathbb{R}$ and the random sequence $X: \Omega \rightarrow X^{\mathbb{Z}_{+}}$, we define the history until time $n \in \mathbb{Z}_{+}$as $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.

Remark 1. Recall that the event space \mathcal{F}_{n} is generated by the historical events of the form

$$
H_{n}=\cap_{i=1}^{n}\left\{X_{i} \leqslant x_{i}\right\} \text {, where } x \in \mathbb{R}^{n}
$$

Remark 2. When the state space X is countable, the event space \mathcal{F}_{n} is generated by the historical events of the form

$$
H_{n}=\cap_{i=1}^{n}\left\{X_{i}=x_{i}\right\}, \text { where } x \in X^{n}
$$

Definition 1.2 (DTMC). For a countable set X, a discrete-valued random sequence ($X_{n} \in X^{\Omega}: n \in \mathbb{Z}_{+}$) is called a discrete time Markov chain (DTMC) if for all positive integers $n \in \mathbb{Z}_{+}$, all states $x, y \in X$, and any historical event $H_{n-1}=\cap_{m=0}^{n-1}\left\{X_{m}=x_{m}\right\} \in \mathcal{F}_{n}$ for $\left(x_{0}, \ldots, x_{n-1}\right) \in X^{n}$, the process X satisfies the Markov property

$$
P\left(\left\{X_{n+1}=y\right\} \mid H_{n-1} \cap\left\{X_{n}=x\right\}\right)=P\left(\left\{X_{n+1}=y\right\} \mid\left\{X_{n}=x\right\}\right)
$$

The probability of a discrete time Markov chain X being in state $y \in X$ at time $n+1$ from a state $x \in X$ at time n, is determined by the transition probability denoted by

$$
p_{x y}(n) \triangleq P\left(\left\{X_{n+1}=y\right\} \mid\left\{X_{n}=x\right\}\right) .
$$

The set X is called the state space of the Markov chain. The transition probability matrix at time n is denoted by $P(n) \in[0,1]^{X \times X}$, such that $P_{x y}(n)=p_{x y}(n)$.

Remark 3. We observe that each row $P_{x}(n)=\left(p_{x y}(n): y \in X\right)$ is the conditional distribution of X_{n+1} given $X_{n}=x$.

Definition 1.3 (Random walk). Consider the state space $X=\mathbb{R}^{d}$, and the countable index set $T=\mathbb{Z}_{+}$. Consider the random process $X: \Omega \rightarrow X^{\mathbb{Z}_{+}}$be an be an independent (not necessarily identical) sequence. Let $S_{0}=0$ and $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ for all $n \in \mathbb{Z}_{+}$, then the process $S: \Omega \rightarrow X^{\mathbb{Z}_{+}}$is called a random walk.

Remark 4. We can think of S_{n} as the random location of a particle after n steps, where the particle starts from origin and takes steps of size X_{i} at the i th step.

Theorem 1.4 (Random walk). For a random walk $\left(S_{n}: n \in \mathbb{N}\right)$ with independent step-size sequence X, the following are true.
i_{-}The first two moments are $\mathbb{E} S_{n}=\sum_{i=1}^{n} \mathbb{E} X_{i}$ and $\operatorname{Var}\left[S_{n}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]$.
ii_ Random walk is non-stationary with independent increments. The disjoint increments are stationary if the step-size sequence X is identically distributed.

iii_ Random walk is a Markov sequence.

Proof. Results follow from the independence of the step-size sequence X.
i_ Follows from the linearity of expectation and independence of step sizes.
ii_ Since the mean is time dependent, random walk is non-stationary process. Independence of increments follows from the independence of step sizes. That is, since $\mathcal{F}_{n}=\sigma\left(S_{0}, S_{1}, \ldots, S_{n}\right)=$ $\sigma\left(S_{0}, X_{1}, \ldots, X_{n}\right)$ and the collection $\left(X_{n+1}, \ldots, X_{m}\right)$ is independent of $\sigma\left(S_{0}, X_{1}, \ldots, X_{n}\right)$ for all $m>$ n. Since $S_{m}-S_{n}=X_{n+1}+\cdots+X_{m} \in \sigma\left(X_{n+1}, \ldots, X_{m}\right)$, we have the independent increments. When the step-sizes are also identically distributed, the joint distributions of $\left(X_{1}, \ldots, X_{m-n}\right)$ and $\left(X_{n+1}, \ldots, X_{m}\right)$ are identical. This implies the stationarity of increments for i.i.d. step-sizes.
iii_ Given the historical event $H_{n-1} \triangleq \cap_{k=1}^{n-1}\left\{S_{k} \leqslant s_{k}\right\}$ and the current state $\left\{S_{n} \leqslant s_{n}\right\}$, we can write the conditional probability

$$
\begin{aligned}
P\left(\left\{S_{n+1} \leqslant s_{n+1}\right\} \mid H_{n-1} \cap\left\{S_{n} \leqslant s_{n}\right\}\right) & =P\left(\left\{X_{n+1} \leqslant s_{n+1}-S_{n}\right\} \mid H_{n-1} \cap\left\{S_{n} \leqslant s_{n}\right\}\right) \\
& =P\left(\left\{S_{n+1} \leqslant s_{n+1}\right\} \mid\left\{S_{n} \leqslant s_{n}\right\}\right) .
\end{aligned}
$$

The equality in the second line follows from the independence of the step-size sequence. In particular, from the independence of X_{n+1} from the collection $\sigma\left(S_{0}, X_{1}, \ldots, X_{n}\right)=\sigma\left(S_{0}, S_{1}, \ldots, S_{n}\right)$. For the countable state space X, an given the historical event $H_{n-1} \triangleq \cap_{k=1}^{n-1}\left\{S_{k}=s_{k}\right\}$ and the current state $\left\{S_{n}=s_{n}\right\}$, we can write the conditional probability

$$
\begin{aligned}
P\left(\left\{S_{n+1}=s_{n+1}\right\} \mid H_{n-1} \cap\left\{S_{n}=s_{n}\right\}\right) & =P\left(\left\{X_{n+1}=s_{n+1}-S_{n}\right\} \mid H_{n-1} \cap\left\{S_{n}=s_{n}\right\}\right) \\
& =P\left(\left\{S_{n+1}=s_{n+1}\right\} \mid\left\{S_{n}=s_{n}\right\}\right)=P\left\{X_{n+1}=s_{n+1}-s_{n}\right\} .
\end{aligned}
$$

Definition 1.5. For all states $x, y \in X$, a matrix $A \in \mathbb{R}_{+}^{X} \times X$ with non-negative entries is called sub-stochastic if the row-sum $\sum_{y \in X} a_{x y} \leqslant 1$ for all rows $x \in \mathcal{X}$. If the above property holds with equality for all rows, then it is called a stochastic matrix. If matrices A and A^{T} are both stochastic, then the matrix A is called doubly stochastic.

Remark 5. We make the following observations for the stochastic matrices.
i_ Every probability transition matrix $P(n)$ is a stochastic matrix.
ii_ All the entries of a sub-stochastic matrix lie in $[0,1]$.
iii_ Each row of the stochastic matrix $A \in \mathbb{R}_{+}^{X \times X}$ is probability mass function over the state space X.
iv_ Every finite stochastic matrix has a right eigenvector with unit eigenvalue. This can be observed by taking $\mathbf{1}^{T}=\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right]$ to be an all-one vector of length $|X|$. Then we see that $A \mathbf{1}=\mathbf{1}$, since for each $x \in X$

$$
(A \mathbf{1})_{x}=\sum_{y \in X} a_{x y} \mathbf{1}_{y}=\frac{1}{n} \sum_{y \in X} a_{x y}=\mathbf{1}_{x}
$$

v_ Every finite doubly stochastic matrix has a left and right eigenvector with unit eigenvalue. This follows from the fact that finite stochastic matrices A and A^{T} have a common right eigenvector 1 . It follows that A has a left eigenvector $\mathbf{1}^{T}$.
vi_ For a probability transition matrix $P(n)$, we have

$$
\sum_{y \in X} f(y) p_{x y}(n)=\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}=x\right]
$$

2 Homogeneous Markov chain

In general, not much can be said about Markov chains with index dependent transition probabilities. Hence, we consider the simpler case where the transition probabilities $p_{x y}(n)=p_{x y}$ are independent of the index. We call such DTMC as homogeneous and call the linear operator $P=\left(p_{x y}: x, y \in X\right)$ the transition matrix.

Example 2.1 (Integer random walk). For a one-dimensional integer valued random walk $X: \Omega \rightarrow \mathbb{Z}^{\mathbb{N}}$ with i.i.d. unit step size sequence $Z: \Omega \rightarrow\{-1,1\}^{\mathbb{N}}$ such that $P\left\{Z_{1}=1\right\}=p$, the following are true.
i. The transition operator $P \in[0,1]^{\mathbb{Z}_{+} \times \mathbb{Z}_{+}}$is given by the entries

$$
p_{x y}=p 1_{\{y=x+1\}}+(1-p) 1_{\{y=x-1\}}
$$

ii_ Number of positive steps after n steps is $\operatorname{Binomial}(n, p)$.
iii_ $P\left\{X_{n}=k\right\}=\binom{n}{(n+k) / 2} p^{(n+k) / 2} q^{(n-k) / 2}$ for $n+k$ even, and 0 otherwise.

Example 2.2 (Sequence of experiments). Consider a random sequence of experiments, where the nth outcome is denoted by X_{n}, such that each experiment has two possible outcomes in $X=\{S, F\}$. We assume that it takes unit time to perform each experiment.

Let $p, q \in[0,1]$. Given the outcome was S, the probability of next outcome being S is $1-p$. Similarly, given the outcome was F, the probability of next outcome being F is $1-q$. We can see that $X=\left(X_{n}\right.$: $n \in \mathbb{Z}_{+}$) is homogeneous Markov chain, with probability transition matrix

$$
P=\left[\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right]
$$

We denote the conditional distribution of X_{n+1} given $X_{0}=S$ by v_{n+1}, and the conditional distribution of X_{n+1} given $X_{0}=F$ by μ_{n+1}. That is,

$$
\left.\left.\begin{array}{rl}
v_{n} & =\left[P\left(\left\{X_{n}=S\right\} \mid\left\{X_{0}=S\right\}\right)\right.
\end{array} \quad P\left(\left\{X_{n}=F\right\} \mid\left\{X_{0}=S\right\}\right)\right], ~ 子 \begin{array}{ll}
P\left(\left\{X_{n}=S\right\} \mid\left\{X_{0}=F\right\}\right) & P\left(\left\{X_{n}=F\right\} \mid\left\{X_{0}=F\right\}\right)
\end{array}\right] .
$$

Let π_{0} be the initial distribution on the experiment outcome, and π_{n} be the distribution of the experiment outcome at time n. Then, we can write

$$
\begin{aligned}
\pi_{n}(S) & \triangleq P\left\{X_{n}=S\right\}=P\left(\left\{X_{n}=S\right\} \mid\left\{X_{0}=S\right\}\right) \pi_{0}(S)+P\left(\left\{X_{n}=S\right\} \mid\left\{X_{0}=F\right\}\right) \pi_{0}(F) \\
& =v_{n}(S) \pi_{0}(S)+\mu_{n}(S) \pi_{0}(F)
\end{aligned}
$$

Similarly, we can write $\pi_{n}(F)=v_{n}(F) \pi_{0}(S)+\mu_{n}(F) \pi_{0}(F)$. That is, we can write

$$
\pi_{n} \triangleq\left[\begin{array}{ll}
\pi_{n}(S) & \left.\pi_{n}(F)\right]=\left[\begin{array}{ll}
\pi_{0}(S) & \pi_{0}(F)
\end{array}\right]\left[\begin{array}{ll}
v_{n}(S) & v_{n}(F) \\
\mu_{n}(S) & \mu_{n}(F)
\end{array}\right]=\pi_{0}\left[\begin{array}{l}
v_{n} \\
\mu_{n}
\end{array}\right]
\end{array}\right.
$$

That is to compute the unconditional distribution of X_{n}, given initial distribution π_{0}, we need to compute conditional distributions v_{n} and μ_{n}. We can see that

$$
\left.\begin{array}{ll}
v_{1}=\left[\begin{array}{ll}
1-p & p
\end{array}\right], & v_{2}=\left[(1-p)^{2}+p q \quad(1-p) p+p(1-q)\right.
\end{array}\right],
$$

This method of direct computation can quickly become too cumbersome.

