
Lecture-21: DTMC: Representation

1 n-step transition

Consider a homogeneous Markov chain X : Ω→ XZ+ with countable state space X and transition matrix P.

Definition 1.1. We would respectively denote the conditional probability of events and conditional expec-
tation of random variables, conditioned on the event X0 = x, by

Px(A) = P(A
∣∣ {X0 = x}), Ex[Y] = E

[
A
∣∣ {X0 = x}

]
.

Proposition 1.2. Conditioned on the initial state, any finite dimensional distribution of a homogeneous Markov
chain is stationary.

Proof. To this end, we compute the transition probabilities for the path (x1, . . . , xn) taken by the sample path
(X1, . . . , Xn) when X0 = x0 and by the sample path (Xm+1, . . . , Xm+n) when Xm = x0. For each i ∈ {0, . . . ,n},
we can define events

Hi , ∩i
j=1
{

Xj = xj
}

, H̃i , ∩i
j=0
{

Xj = xj
}
= hi ∩ {X0 = x0} .

We observe that Hi = {Xi = xi} ∩ Hi−1 and Hi, H̃i ∈ Fi = σ(X0, . . . , Xi) for all i ∈N. From the definition of
Hn−1, H̃n−1, and the conditional probability, we can write

Px0(Hn) = Px0({Xn = xn} ∩ Hn−1) = P({Xn = xn}
∣∣ H̃n−1)Px0(Hn−1).

Using the fact that H̃n−1 = {Xn−1 = xn−1} ∩ H̃n−2, and the Markovity and homogeneity of the process X,
we obtain

P({Xn = xn}
∣∣ H̃n−1) = P({Xn = xn}

∣∣ {Xn−1 = xn−1} ∩ H̃n−2) = pxn−1xn .

Inductively, we can write the conditional joint distribution of Hn given the event {X0 = x0} as

Px0(Hn) = px0x1 . . . pxn−1xn .

Similarly, we can write for the sample path (Xm+1, . . . , Xm+n) given Xm = x0,

P({Xm+1 = x1, . . . , Xm+n = xn}
∣∣ {Xm = x0}) =

n

∏
i=1

P({Xm+i = xi)}
∣∣ {Xm+i−1 = xi−1}) = px0x1 px1x2 . . . pxn−1xn .

Corollary 1.3. The n-step transition probabilities are stationary for any homogeneous Markov chain. That is, for any
states x,y ∈ X and n,m ∈N, we have

P({Xn+m = y}|{Xm = x}) = P({Xn = y}|{X0 = x}).

Proof. It follows from summing over intermediate steps. In particular, we can partition the outcome space
Ω in terms of disjoint events

{
En−1(x0, . . . , xn−1), ∩n−1

i=1 {Xi = xi} : x1, . . . , xn−1 ∈ X
}

. Then, we can write

{Xn = xn} = ∪x1,...,xn−1∈X {Xn = xn} ∩ En−1(x0, . . . , xn−1).

Using the law of total probability, we can write the conditional probability

Px0 {Xn = xn} = ∑
x1,...,xn−1∈X

Px0({Xn = xn} ∩ En−1(x0, . . . , xn−1)).
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Similarly, we can write using the law of total probability for partition
{

Fn−1(x1, . . . , xn−1), ∩n−1
i=1 {Xm+i = xi} : x1, . . . , xn−1 ∈ X

}
,

we can write

P({Xm+n = xn}
∣∣ {Xm = x0}) = ∑

x1,...,xn−1∈X
P({Xm+n = xn} ∩ Fn−1(x0, . . . , xn−1)

∣∣ {Xm = x0}).

From the stationarity in joint distribution conditioned on initial state for the homogeneous Markov chain
X, we have

P({Xm+n = xn} ∩ Fn−1(x0, . . . , xn−1)
∣∣ {Xm = x0}) = P({Xn = xn} ∩ En−1(x0, . . . , xn−1)

∣∣ {X0 = x0}).

The result follows.

Hence, it follows that for a homogeneous Markov chain, we can define n-step transition probabilities
for x,y ∈ X and m,n ∈N

p(n)xy , P({Xn+m = y}|{Xm = x}).

That is, the row P(n)
x = (p(n)xy : y ∈ X) is the conditional distribution of Xn given X0 = x.

Theorem 1.4. The n-step transition probabilities form a semi-group. That is, for all positive integers m,n

P(m+n) = P(m)P(n).

Proof. The events {{Xm = z} : z ∈ X} partition the sample space Ω, and hence we can express the event
{Xm+ny} as the following disjoint union

{Xm+n = y} = ∪z∈X {Xm+n = y, Xm = z} .

It follows from the Markov property and law of total probability that for any states x,y and positive integers
m,n

p(m+n)
xy = ∑

z∈X
Px({Xn+m = y, Xm = z}) = ∑

z∈X
P({Xn+m = y

∣∣ Xm = z, X0 = x})Px({Xm = z})

= ∑
z∈X

P({Xn+m = y
∣∣ Xm = z})Px({Xm = z}) = ∑

z∈X
p(m)

xz p(n)zy = (P(m)P(n))xy.

Since the choice of states x,y ∈ X were arbitrary, the result follows.

Corollary 1.5. The n-step transition probability matrix is given by P(n) = Pn for any positive integer n.

Proof. In particular, we have P(n+1) = P(n)P(1) = P(1)P(n). Since P(1) = P, we have P(n) = Pn by induction.

Remark 1. That is, for all states x,y and non-negative integers n ∈Z+, p(n)xy = Pn
xy.

2 Representation

2.1 Chapman Kolmogorov equations

We denote by π0 ∈ RX
+ the initial distribution of the Markov chain, that is π0(x) = P{X0 = x}. The distri-

bution of Xn is given by πn ∈RX
+ , such that for any state x ∈ X.

πn(x) = P{Xn = x} = ∑
z∈X

p(n)zx π0(z) = (π0Pn)x.

We can write this succinctly in terms of transition probability matrix P as µn = µ0Pn. We can alternatively
derive this result by the following Lemma.
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Lemma 2.1. The right multiplication of a probability vector with the transition matrix P transforms the probability
distribution of current state to probability distribution of the next state. That is,

πn+1 = πnP, for all n ∈N.

Proof. To see this, we fix y ∈ X and from the law of total probability and the definition conditional proba-
bility, we observe that

πn+1(y) = P{Xn+1 = y} = ∑
x∈X

P{Xn+1 = y, Xn = x} = ∑
x∈X

P{Xn = x} pxy = (πnP)y.

2.2 Transition graph

We can define a collection E of possible one-step transitions indicated by the initial and the final state, as

E , {[x,y〉 ∈ X×X : pxy > 0}.

A transition matrix P is sometimes represented by a directed weighted graph G = (X, E,W), where the set
of nodes in the graph G is the state space X, and the set of directed edges is the set of possible transitions.
In addition, this graph has a weight we = pxy on each edge e = [x,y〉 ∈ E.

Example 2.2 (Integer random walk). For an integer random walk X = (Xn ∈Z : n ∈N) with i.i.d. step-
size sequence Z = (Zn ∈ {−1,1} ,n ∈N), we have and infinite graph G = (Z, E), where the edge set
is

E = {(n,n + 1) : n ∈Z} ∪ {(n,n− 1) : n ∈Z} .

We have plotted the sub-graph of the entire transition graph for states {−1,0,1} in Figure 1.
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Figure 1: Sub-graph of the entire transition graph for an integer random walk with i.i.d. step-sizes in {−1,1}
with probability p for the positive step.

Example 2.3 (Sequence of experiments). Consider the sequence of experiments with the set of out-
comes X= {0,1} with the transition matrix

P =

[
1− q q

p 1− p

]
.

We have plotted the corresponding transition graph for this two-state Markov chain in Figure 2.
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Figure 2: Markov chain for the sequence of experiments with two outcomes.

2.3 Random Mapping Theorem

We saw some example of Markov processes where Xn = Xn−1 + Zn, and (Zn : n ∈N) is an iid sequence,
independent of the initial state X0. We will show that any discrete time Markov chain is of this form, where
the sum is replaced by arbitrary functions.

Theorem 2.4 (Random mapping theorem). For any DTMC X, there exists an i.i.d. sequence Z ∈ ΛN and a
function f : X×Λ→ X such that Xn = f (Xn−1, Zn) for all n ∈N.

Remark 2. A random mapping representation of a transition matrix P on state space X is a function f :
X×Λ→ X , along with a Λ-valued random variable Y, satisfying

P{ f (x,Y) = y} = pxy, for all x,y ∈ X.

Proof. It suffices to show that every transition matrix P has a random mapping representation. Then for the
mapping f and the i.i.d sequence Z = (Zn : n ∈N) with the same distribution as random variable Y, we
would have Xn = f (Xn−1, Zn) for all n ∈N.

Let Λ = [0,1], and we choose the i.i.d. sequence Z, uniformly at random from this interval. Since X is
countable, it can be ordered. We let X= N without any loss of generality. We set Fxy , ∑w6y pxw and define

f (x,z) = ∑
y∈N

y1{Fx,y−1<z6Fx,y}.

It follows that P{ f (x, Z) = y} = P
{

Fx,y−1 < Z 6 Fx,y
}
= pxy.
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