Lecture-21: DTMC: Representation

1 n-step transition

Consider a homogeneous Markov chain $X: \Omega \rightarrow X^{Z_{+}}$with countable state space X and transition matrix P.
Definition 1.1. We would respectively denote the conditional probability of events and conditional expectation of random variables, conditioned on the event $X_{0}=x$, by

$$
P_{x}(A)=P\left(A \mid\left\{X_{0}=x\right\}\right), \quad \mathbb{E}_{x}[Y]=\mathbb{E}\left[A \mid\left\{X_{0}=x\right\}\right] .
$$

Proposition 1.2. Conditioned on the initial state, any finite dimensional distribution of a homogeneous Markov chain is stationary.
Proof. To this end, we compute the transition probabilities for the path $\left(x_{1}, \ldots, x_{n}\right)$ taken by the sample path $\left(X_{1}, \ldots, X_{n}\right)$ when $X_{0}=x_{0}$ and by the sample path $\left(X_{m+1}, \ldots, X_{m+n}\right)$ when $X_{m}=x_{0}$. For each $i \in\{0, \ldots, n\}$, we can define events

$$
H_{i} \triangleq \cap_{j=1}^{i}\left\{X_{j}=x_{j}\right\}, \quad \quad \tilde{H}_{i} \triangleq \cap_{j=0}^{i}\left\{X_{j}=x_{j}\right\}=h_{i} \cap\left\{X_{0}=x_{0}\right\} .
$$

We observe that $H_{i}=\left\{X_{i}=x_{i}\right\} \cap H_{i-1}$ and $H_{i}, \tilde{H}_{i} \in \mathcal{F}_{i}=\sigma\left(X_{0}, \ldots, X_{i}\right)$ for all $i \in \mathbb{N}$. From the definition of H_{n-1}, \tilde{H}_{n-1}, and the conditional probability, we can write

$$
P_{x_{0}}\left(H_{n}\right)=P_{x_{0}}\left(\left\{X_{n}=x_{n}\right\} \cap H_{n-1}\right)=P\left(\left\{X_{n}=x_{n}\right\} \mid \tilde{H}_{n-1}\right) P_{x_{0}}\left(H_{n-1}\right) .
$$

Using the fact that $\tilde{H}_{n-1}=\left\{X_{n-1}=x_{n-1}\right\} \cap \tilde{H}_{n-2}$, and the Markovity and homogeneity of the process X, we obtain

$$
P\left(\left\{X_{n}=x_{n}\right\} \mid \tilde{H}_{n-1}\right)=P\left(\left\{X_{n}=x_{n}\right\} \mid\left\{X_{n-1}=x_{n-1}\right\} \cap \tilde{H}_{n-2}\right)=p_{x_{n-1} x_{n}} .
$$

Inductively, we can write the conditional joint distribution of H_{n} given the event $\left\{X_{0}=x_{0}\right\}$ as

$$
P_{x_{0}}\left(H_{n}\right)=p_{x_{0} x_{1}} \ldots p_{x_{n-1} x_{n}} .
$$

Similarly, we can write for the sample path $\left(X_{m+1}, \ldots, X_{m+n}\right)$ given $X_{m}=x_{0}$,

$$
\left.P\left(\left\{X_{m+1}=x_{1}, \ldots, X_{m+n}=x_{n}\right\} \mid\left\{X_{m}=x_{0}\right\}\right)=\prod_{i=1}^{n} P\left(\left\{X_{m+i}=x_{i}\right)\right\} \mid\left\{X_{m+i-1}=x_{i-1}\right\}\right)=p_{x_{0} x_{1}} p_{x_{1} x_{2}} \ldots p_{x_{n-1} x_{n}} .
$$

Corollary 1.3. The n-step transition probabilities are stationary for any homogeneous Markov chain. That is, for any states $x, y \in X$ and $n, m \in \mathbb{N}$, we have

$$
P\left(\left\{X_{n+m}=y\right\} \mid\left\{X_{m}=x\right\}\right)=P\left(\left\{X_{n}=y\right\} \mid\left\{X_{0}=x\right\}\right) .
$$

Proof. It follows from summing over intermediate steps. In particular, we can partition the outcome space Ω in terms of disjoint events $\left\{E_{n-1}\left(x_{0}, \ldots, x_{n-1}\right) \triangleq \cap_{i=1}^{n-1}\left\{X_{i}=x_{i}\right\}: x_{1}, \ldots, x_{n-1} \in X\right\}$. Then, we can write

$$
\left\{X_{n}=x_{n}\right\}=\cup_{x_{1}, \ldots, x_{n-1} \in x}\left\{X_{n}=x_{n}\right\} \cap E_{n-1}\left(x_{0}, \ldots, x_{n-1}\right) .
$$

Using the law of total probability, we can write the conditional probability

$$
P_{x_{0}}\left\{X_{n}=x_{n}\right\}=\sum_{x_{1}, \ldots, x_{n-1} \in X} P_{x_{0}}\left(\left\{X_{n}=x_{n}\right\} \cap E_{n-1}\left(x_{0}, \ldots, x_{n-1}\right)\right) .
$$

Similarly, we can write using the law of total probability for partition $\left\{F_{n-1}\left(x_{1}, \ldots, x_{n-1}\right) \triangleq \cap_{i=1}^{n-1}\left\{X_{m+i}=x_{i}\right\}: x_{1}, \ldots, x_{n-1} \in\right.$ we can write

$$
P\left(\left\{X_{m+n}=x_{n}\right\} \mid\left\{X_{m}=x_{0}\right\}\right)=\sum_{x_{1}, \ldots, x_{n-1} \in X} P\left(\left\{X_{m+n}=x_{n}\right\} \cap F_{n-1}\left(x_{0}, \ldots, x_{n-1}\right) \mid\left\{X_{m}=x_{0}\right\}\right)
$$

From the stationarity in joint distribution conditioned on initial state for the homogeneous Markov chain X, we have

$$
P\left(\left\{X_{m+n}=x_{n}\right\} \cap F_{n-1}\left(x_{0}, \ldots, x_{n-1}\right) \mid\left\{X_{m}=x_{0}\right\}\right)=P\left(\left\{X_{n}=x_{n}\right\} \cap E_{n-1}\left(x_{0}, \ldots, x_{n-1}\right) \mid\left\{X_{0}=x_{0}\right\}\right)
$$

The result follows.
Hence, it follows that for a homogeneous Markov chain, we can define n-step transition probabilities for $x, y \in X$ and $m, n \in \mathbb{N}$

$$
p_{x y}^{(n)} \triangleq P\left(\left\{X_{n+m}=y\right\} \mid\left\{X_{m}=x\right\}\right) .
$$

That is, the row $P_{x}^{(n)}=\left(p_{x y}^{(n)}: y \in X\right)$ is the conditional distribution of X_{n} given $X_{0}=x$.
Theorem 1.4. The n-step transition probabilities form a semi-group. That is, for all positive integers m, n

$$
P^{(m+n)}=P^{(m)} P^{(n)} .
$$

Proof. The events $\left\{\left\{X_{m}=z\right\}: z \in X\right\}$ partition the sample space Ω, and hence we can express the event $\left\{X_{m+n} y\right\}$ as the following disjoint union

$$
\left\{X_{m+n}=y\right\}=\cup_{z \in X}\left\{X_{m+n}=y, X_{m}=z\right\}
$$

It follows from the Markov property and law of total probability that for any states x, y and positive integers m, n

$$
\begin{aligned}
p_{x y}^{(m+n)} & =\sum_{z \in X} P_{x}\left(\left\{X_{n+m}=y, X_{m}=z\right\}\right)=\sum_{z \in X} P\left(\left\{X_{n+m}=y \mid X_{m}=z, X_{0}=x\right\}\right) P_{x}\left(\left\{X_{m}=z\right\}\right) \\
& =\sum_{z \in X} P\left(\left\{X_{n+m}=y \mid X_{m}=z\right\}\right) P_{x}\left(\left\{X_{m}=z\right\}\right)=\sum_{z \in X} p_{x z}^{(m)} p_{z y}^{(n)}=\left(P^{(m)} P^{(n)}\right)_{x y}
\end{aligned}
$$

Since the choice of states $x, y \in X$ were arbitrary, the result follows.
Corollary 1.5. The n-step transition probability matrix is given by $P^{(n)}=P^{n}$ for any positive integer n.
Proof. In particular, we have $P^{(n+1)}=P^{(n)} P^{(1)}=P^{(1)} P^{(n)}$. Since $P^{(1)}=P$, we have $P^{(n)}=P^{n}$ by induction.

Remark 1. That is, for all states x, y and non-negative integers $n \in \mathbb{Z}_{+}, p_{x y}^{(n)}=P_{x y}^{n}$.

2 Representation

2.1 Chapman Kolmogorov equations

We denote by $\pi_{0} \in \mathbb{R}_{+}^{X}$ the initial distribution of the Markov chain, that is $\pi_{0}(x)=P\left\{X_{0}=x\right\}$. The distribution of X_{n} is given by $\pi_{n} \in \mathbb{R}_{+}^{X}$, such that for any state $x \in \mathcal{X}$.

$$
\pi_{n}(x)=P\left\{X_{n}=x\right\}=\sum_{z \in X} p_{z x}^{(n)} \pi_{0}(z)=\left(\pi_{0} P^{n}\right)_{x}
$$

We can write this succinctly in terms of transition probability matrix P as $\mu_{n}=\mu_{0} P^{n}$. We can alternatively derive this result by the following Lemma.

Lemma 2.1. The right multiplication of a probability vector with the transition matrix P transforms the probability distribution of current state to probability distribution of the next state. That is,

$$
\pi_{n+1}=\pi_{n} P, \text { for all } n \in \mathbb{N}
$$

Proof. To see this, we fix $y \in X$ and from the law of total probability and the definition conditional probability, we observe that

$$
\pi_{n+1}(y)=P\left\{X_{n+1}=y\right\}=\sum_{x \in X} P\left\{X_{n+1}=y, X_{n}=x\right\}=\sum_{x \in X} P\left\{X_{n}=x\right\} p_{x y}=\left(\pi_{n} P\right)_{y}
$$

2.2 Transition graph

We can define a collection E of possible one-step transitions indicated by the initial and the final state, as

$$
E \triangleq\left\{[x, y\rangle \in X \times X: p_{x y}>0\right\}
$$

A transition matrix P is sometimes represented by a directed weighted graph $G=(X, E, W)$, where the set of nodes in the graph G is the state space X, and the set of directed edges is the set of possible transitions. In addition, this graph has a weight $w_{e}=p_{x y}$ on each edge $e=[x, y\rangle \in E$.

Example 2.2 (Integer random walk). For an integer random walk $X=\left(X_{n} \in \mathbb{Z}: n \in \mathbb{N}\right)$ with i.i.d. stepsize sequence $Z=\left(Z_{n} \in\{-1,1\}, n \in \mathbb{N}\right)$, we have and infinite graph $G=(\mathbb{Z}, E)$, where the edge set is

$$
E=\{(n, n+1): n \in \mathbb{Z}\} \cup\{(n, n-1): n \in \mathbb{Z}\}
$$

We have plotted the sub-graph of the entire transition graph for states $\{-1,0,1\}$ in Figure 1 .

Figure 1: Sub-graph of the entire transition graph for an integer random walk with i.i.d. step-sizes in $\{-1,1\}$ with probability p for the positive step.

Example 2.3 (Sequence of experiments). Consider the sequence of experiments with the set of outcomes $X=\{0,1\}$ with the transition matrix

$$
P=\left[\begin{array}{cc}
1-q & q \\
p & 1-p
\end{array}\right]
$$

We have plotted the corresponding transition graph for this two-state Markov chain in Figure 2

Figure 2: Markov chain for the sequence of experiments with two outcomes.

2.3 Random Mapping Theorem

We saw some example of Markov processes where $X_{n}=X_{n-1}+Z_{n}$, and $\left(Z_{n}: n \in \mathbb{N}\right)$ is an iid sequence, independent of the initial state X_{0}. We will show that any discrete time Markov chain is of this form, where the sum is replaced by arbitrary functions.
Theorem 2.4 (Random mapping theorem). For any DTMC X, there exists an i.i.d. sequence $Z \in \Lambda^{\mathbb{N}}$ and a function $f: X \times \Lambda \rightarrow X$ such that $X_{n}=f\left(X_{n-1}, Z_{n}\right)$ for all $n \in \mathbb{N}$.

Remark 2. A random mapping representation of a transition matrix P on state space X is a function f : $X \times \Lambda \rightarrow X$, along with a Λ-valued random variable Y, satisfying

$$
P\{f(x, Y)=y\}=p_{x y}, \text { for all } x, y \in X
$$

Proof. It suffices to show that every transition matrix P has a random mapping representation. Then for the mapping f and the i.i.d sequence $Z=\left(Z_{n}: n \in \mathbb{N}\right)$ with the same distribution as random variable Y, we would have $X_{n}=f\left(X_{n-1}, Z_{n}\right)$ for all $n \in \mathbb{N}$.

Let $\Lambda=[0,1]$, and we choose the i.i.d. sequence Z, uniformly at random from this interval. Since X is countable, it can be ordered. We let $X=\mathbb{N}$ without any loss of generality. We set $F_{x y} \triangleq \sum_{w \leqslant y} p_{x w}$ and define

$$
f(x, z)=\sum_{y \in \mathbb{N}} y 1_{\left\{F_{x, y-1}<z \leqslant F_{x, y}\right\}}
$$

It follows that $P\{f(x, Z)=y\}=P\left\{F_{x, y-1}<Z \leqslant F_{x, y}\right\}=p_{x y}$.

