# Lecture-21: DTMC: Representation

### **1** *n*-step transition

Consider a homogeneous Markov chain  $X : \Omega \to X^{\mathbb{Z}_+}$  with countable state space X and transition matrix P. **Definition 1.1.** We would respectively denote the conditional probability of events and conditional expec-

**Definition 1.1.** We would respectively denote the conditional probability of events and conditional expectation of random variables, conditioned on the event  $X_0 = x$ , by

$$P_x(A) = P(A \mid \{X_0 = x\}), \qquad \mathbb{E}_x[Y] = \mathbb{E}[A \mid \{X_0 = x\}].$$

**Proposition 1.2.** Conditioned on the initial state, any finite dimensional distribution of a homogeneous Markov chain is stationary.

*Proof.* To this end, we compute the transition probabilities for the path  $(x_1, ..., x_n)$  taken by the sample path  $(X_1, ..., X_n)$  when  $X_0 = x_0$  and by the sample path  $(X_{m+1}, ..., X_{m+n})$  when  $X_m = x_0$ . For each  $i \in \{0, ..., n\}$ , we can define events

$$H_i \triangleq \cap_{j=1}^i \left\{ X_j = x_j \right\}, \qquad \qquad \tilde{H}_i \triangleq \cap_{j=0}^i \left\{ X_j = x_j \right\} = h_i \cap \left\{ X_0 = x_0 \right\}.$$

We observe that  $H_i = \{X_i = x_i\} \cap H_{i-1}$  and  $H_i, \tilde{H}_i \in \mathcal{F}_i = \sigma(X_0, ..., X_i)$  for all  $i \in \mathbb{N}$ . From the definition of  $H_{n-1}, \tilde{H}_{n-1}$ , and the conditional probability, we can write

$$P_{x_0}(H_n) = P_{x_0}(\{X_n = x_n\} \cap H_{n-1}) = P(\{X_n = x_n\} \mid \tilde{H}_{n-1})P_{x_0}(H_{n-1})$$

Using the fact that  $\tilde{H}_{n-1} = \{X_{n-1} = x_{n-1}\} \cap \tilde{H}_{n-2}$ , and the Markovity and homogeneity of the process X, we obtain

$$P(\{X_n = x_n\} \mid \tilde{H}_{n-1}) = P(\{X_n = x_n\} \mid \{X_{n-1} = x_{n-1}\} \cap \tilde{H}_{n-2}) = p_{x_{n-1}x_n}.$$

Inductively, we can write the conditional joint distribution of  $H_n$  given the event  $\{X_0 = x_0\}$  as

$$P_{x_0}(H_n)=p_{x_0x_1}\dots p_{x_{n-1}x_n}.$$

Similarly, we can write for the sample path  $(X_{m+1}, ..., X_{m+n})$  given  $X_m = x_0$ ,

$$P(\{X_{m+1} = x_1, \dots, X_{m+n} = x_n\} \mid \{X_m = x_0\}) = \prod_{i=1}^n P(\{X_{m+i} = x_i)\} \mid \{X_{m+i-1} = x_{i-1}\}) = p_{x_0x_1} p_{x_1x_2} \dots p_{x_{n-1}x_n}$$

**Corollary 1.3.** *The n-step transition probabilities are stationary for any homogeneous Markov chain. That is, for any states*  $x, y \in X$  *and*  $n, m \in \mathbb{N}$ *, we have* 

$$P(\{X_{n+m} = y\} | \{X_m = x\}) = P(\{X_n = y\} | \{X_0 = x\}).$$

*Proof.* It follows from summing over intermediate steps. In particular, we can partition the outcome space  $\Omega$  in terms of disjoint events  $\left\{E_{n-1}(x_0, \ldots, x_{n-1}) \triangleq \bigcap_{i=1}^{n-1} \{X_i = x_i\} : x_1, \ldots, x_{n-1} \in \mathcal{X}\right\}$ . Then, we can write

$$\{X_n = x_n\} = \bigcup_{x_1, \dots, x_{n-1} \in \mathcal{X}} \{X_n = x_n\} \cap E_{n-1}(x_0, \dots, x_{n-1}).$$

Using the law of total probability, we can write the conditional probability

$$P_{x_0} \{ X_n = x_n \} = \sum_{x_1, \dots, x_{n-1} \in \mathcal{X}} P_{x_0} (\{ X_n = x_n \} \cap E_{n-1}(x_0, \dots, x_{n-1})).$$

Similarly, we can write using the law of total probability for partition  $\{F_{n-1}(x_1,...,x_{n-1}) \triangleq \bigcap_{i=1}^{n-1} \{X_{m+i} = x_i\} : x_1,...,x_{n-1} \in W$  we can write

$$P(\{X_{m+n}=x_n\} \mid \{X_m=x_0\}) = \sum_{x_1,\dots,x_{n-1}\in\mathcal{X}} P(\{X_{m+n}=x_n\}\cap F_{n-1}(x_0,\dots,x_{n-1}) \mid \{X_m=x_0\}).$$

From the stationarity in joint distribution conditioned on initial state for the homogeneous Markov chain *X*, we have

$$P(\{X_{m+n} = x_n\} \cap F_{n-1}(x_0, \dots, x_{n-1}) \mid \{X_m = x_0\}) = P(\{X_n = x_n\} \cap E_{n-1}(x_0, \dots, x_{n-1}) \mid \{X_0 = x_0\}).$$

The result follows.

Hence, it follows that for a homogeneous Markov chain, we can define *n*-step transition probabilities for  $x, y \in X$  and  $m, n \in \mathbb{N}$ 

$$p_{xy}^{(n)} \triangleq P(\{X_{n+m} = y\} | \{X_m = x\}).$$

That is, the row  $P_x^{(n)} = (p_{xy}^{(n)} : y \in \mathcal{X})$  is the conditional distribution of  $X_n$  given  $X_0 = x$ .

**Theorem 1.4.** The *n*-step transition probabilities form a semi-group. That is, for all positive integers m, n

$$P^{(m+n)} = P^{(m)}P^{(n)}$$

*Proof.* The events  $\{\{X_m = z\} : z \in \mathcal{X}\}$  partition the sample space  $\Omega$ , and hence we can express the event  $\{X_{m+n}y\}$  as the following disjoint union

$$\{X_{m+n} = y\} = \bigcup_{z \in \mathcal{X}} \{X_{m+n} = y, X_m = z\}.$$

It follows from the Markov property and law of total probability that for any states x, y and positive integers m, n

$$p_{xy}^{(m+n)} = \sum_{z \in \mathcal{X}} P_x(\{X_{n+m} = y, X_m = z\}) = \sum_{z \in \mathcal{X}} P(\{X_{n+m} = y \mid X_m = z, X_0 = x\}) P_x(\{X_m = z\})$$
$$= \sum_{z \in \mathcal{X}} P(\{X_{n+m} = y \mid X_m = z\}) P_x(\{X_m = z\}) = \sum_{z \in \mathcal{X}} p_{xz}^{(m)} p_{zy}^{(n)} = (P^{(m)} P^{(n)})_{xy}.$$

Since the choice of states  $x, y \in \mathcal{X}$  were arbitrary, the result follows.

**Corollary 1.5.** The n-step transition probability matrix is given by  $P^{(n)} = P^n$  for any positive integer n.

*Proof.* In particular, we have  $P^{(n+1)} = P^{(n)}P^{(1)} = P^{(1)}P^{(n)}$ . Since  $P^{(1)} = P$ , we have  $P^{(n)} = P^n$  by induction.

*Remark* 1. That is, for all states *x*, *y* and non-negative integers  $n \in \mathbb{Z}_+$ ,  $p_{xy}^{(n)} = P_{xy}^n$ .

## 2 Representation

#### 2.1 Chapman Kolmogorov equations

We denote by  $\pi_0 \in \mathbb{R}^{\mathcal{X}}_+$  the initial distribution of the Markov chain, that is  $\pi_0(x) = P\{X_0 = x\}$ . The distribution of  $X_n$  is given by  $\pi_n \in \mathbb{R}^{\mathcal{X}}_+$ , such that for any state  $x \in \mathcal{X}$ .

$$\pi_n(x) = P\{X_n = x\} = \sum_{z \in \mathcal{X}} p_{zx}^{(n)} \pi_0(z) = (\pi_0 P^n)_x.$$

We can write this succinctly in terms of transition probability matrix *P* as  $\mu_n = \mu_0 P^n$ . We can alternatively derive this result by the following Lemma.

| _ | _ | _ |
|---|---|---|
|   |   |   |
|   |   |   |
|   |   |   |

**Lemma 2.1.** The right multiplication of a probability vector with the transition matrix *P* transforms the probability distribution of current state to probability distribution of the next state. That is,

$$\pi_{n+1} = \pi_n P$$
, for all  $n \in \mathbb{N}$ .

*Proof.* To see this, we fix  $y \in X$  and from the law of total probability and the definition conditional probability, we observe that

$$\pi_{n+1}(y) = P\{X_{n+1} = y\} = \sum_{x \in \mathcal{X}} P\{X_{n+1} = y, X_n = x\} = \sum_{x \in \mathcal{X}} P\{X_n = x\} p_{xy} = (\pi_n P)_y.$$

#### 2.2 Transition graph

We can define a collection *E* of possible one-step transitions indicated by the initial and the final state, as

$$E \triangleq \{ [x, y] \in \mathcal{X} \times \mathcal{X} : p_{xy} > 0 \}.$$

A transition matrix *P* is sometimes represented by a directed weighted graph  $G = (\mathcal{X}, E, W)$ , where the set of nodes in the graph *G* is the state space  $\mathcal{X}$ , and the set of directed edges is the set of possible transitions. In addition, this graph has a weight  $w_e = p_{xy}$  on each edge  $e = [x, y] \in E$ .

**Example 2.2 (Integer random walk).** For an integer random walk  $X = (X_n \in \mathbb{Z} : n \in \mathbb{N})$  with *i.i.d.* stepsize sequence  $Z = (Z_n \in \{-1,1\}, n \in \mathbb{N})$ , we have and infinite graph  $G = (\mathbb{Z}, E)$ , where the edge set is

$$E = \{(n, n+1) : n \in \mathbb{Z}\} \cup \{(n, n-1) : n \in \mathbb{Z}\}.$$

We have plotted the sub-graph of the entire transition graph for states  $\{-1,0,1\}$  in Figure 1.



Figure 1: Sub-graph of the entire transition graph for an integer random walk with *i.i.d.* step-sizes in  $\{-1,1\}$  with probability *p* for the positive step.

**Example 2.3 (Sequence of experiments).** Consider the sequence of experiments with the set of outcomes  $\mathcal{X} = \{0,1\}$  with the transition matrix

$$P = \begin{bmatrix} 1-q & q \\ p & 1-p \end{bmatrix}.$$

We have plotted the corresponding transition graph for this two-state Markov chain in Figure 2.



Figure 2: Markov chain for the sequence of experiments with two outcomes.

#### 2.3 Random Mapping Theorem

We saw some example of Markov processes where  $X_n = X_{n-1} + Z_n$ , and  $(Z_n : n \in \mathbb{N})$  is an iid sequence, independent of the initial state  $X_0$ . We will show that any discrete time Markov chain is of this form, where the sum is replaced by arbitrary functions.

**Theorem 2.4 (Random mapping theorem).** For any DTMC X, there exists an i.i.d. sequence  $Z \in \Lambda^{\mathbb{N}}$  and a function  $f : \mathfrak{X} \times \Lambda \to \mathfrak{X}$  such that  $X_n = f(X_{n-1}, Z_n)$  for all  $n \in \mathbb{N}$ .

*Remark* 2. A **random mapping representation** of a transition matrix *P* on state space  $\mathfrak{X}$  is a function *f* :  $\mathfrak{X} \times \Lambda \rightarrow \mathfrak{X}$ , along with a  $\Lambda$ -valued random variable *Y*, satisfying

$$P\{f(x,Y) = y\} = p_{xy}, \text{ for all } x, y \in \mathcal{X}.$$

*Proof.* It suffices to show that every transition matrix *P* has a random mapping representation. Then for the mapping *f* and the *i.i.d* sequence  $Z = (Z_n : n \in \mathbb{N})$  with the same distribution as random variable *Y*, we would have  $X_n = f(X_{n-1}, Z_n)$  for all  $n \in \mathbb{N}$ .

Let  $\Lambda = [0, 1]$ , and we choose the *i.i.d.* sequence *Z*, uniformly at random from this interval. Since  $\mathcal{X}$  is countable, it can be ordered. We let  $\mathcal{X} = \mathbb{N}$  without any loss of generality. We set  $F_{xy} \triangleq \sum_{w \leq y} p_{xw}$  and define

$$f(x,z) = \sum_{y \in \mathbb{N}} y \mathbb{1}_{\left\{F_{x,y-1} < z \leq F_{x,y}\right\}}.$$

It follows that  $P\{f(x, Z) = y\} = P\{F_{x,y-1} < Z \leq F_{x,y}\} = p_{xy}$ .