Lecture-23: DTMC: Hitting and Recurrence Times

1 Hitting and Recurrence Times

Definition 1.1. Let X : QO — X%+ be a time-homogeneous Markov chain on state space X with transition
probability matrix P. For each state y € X, we can define the first hitting time to this state y after time n =0,
as

Hy £inf{n e N: X, =y}.
Remark 1. We observe that {H, =n} € F, 2 0(Xo,..., Xn).

Definition 1.2. For each n € IN, we can write the probability of first visit to state y at time 7 from the initial
state x, as

2 p({Hy=n} | {Xo=x}) =P {H,=n}.
Definition 1.3. The probability that the Markov chain X hits state y eventually, starting from initial state x
is
fay 2P {Hy <00} = Py(Upen{Hy=n}) = ¥ P {H,=n} = Y fiu).
neN nelN

Remark 2. If fv, = Py { H, < oo} =1 for all initial states x € X, then H,, is a stopping time.
y y y ppmg

Definition 1.4. The distribution (( fé;) :n € N),1— fyy) is called the first passage time distribution for

hitting state y from initial state x. The distribution (( f,E,Z’) :n € IN),1 — fyy) is called the first recurrence time
distribution for return to initial state x.

Definition 1.5. A state is called recurrent if f,y =1, and is called transient if fy, < 1. For a recurrent state
x € X, we can define mean recurrence time as

Haxx £, H, = 2 nPy{Hy=n} = Z nf,gz).
nelN nelN

If the mean recurrence time for a recurrent state x is finite then the state x is called positive recurrent, and
null recurrent otherwise.

Definition 1.6. Let Séo) = 0 and define S;k) to be the kth hitting time of state y, defined as

sk 2 inf{n > sV x, = y}, keN.

We can also define the kth excursion time as H;k) e S;k) - Sy{*l), for all k € IN.

Lemma 1.7. The sequence of random variables {H;k) ceON:k> 2} is ii.d..

Proof. We will show that Hy(k) and Hy(kH) are independent for any k > 2, and the rest follows from induction.
O

Definition 1.8. For a process X : Q — XN, the number of visits to a state y € X in  time steps and its limit
as n — co are defined as

Ny(n) = ) Lix—y), N, = li,{r‘Ny(”) = 2 Yxemyp
k=1 keN



Proposition 1.9. The total number of visits to a state y € X is denoted by Ny =} ,e 1(x,=y}- Then, for each
m € Z.1, we have

_ ) = fxy m =0,
Px{Ny - m} - {fxyfynél(l _ f]/]/)/ m € N.

Proof. Conditioned on Xy = x, the first passage time Hy to state y being finite is a Bernoulli random variable
with probability fy,. The time of the mth return to the state y is a recurrence time for each m € Z . From
strong Markov property, each return to state y is independent of the past. Hence, each return to state y in a
finite time is an iid Bernoulli random variable with probability f,. It follows that the number of recurrences
to state y is the time for first failure to return. Conditioned on initial state being Xy = y, the distribution of
Ny, is geometric random variable with failure probability 1 — f;, . O

Proof. We can write Px {Ny, =0} = P, {H, =c0o} =1 — f,. For m € N, we consider Py {N, >m}. Let
53(,0) = 0 and define Sgk) to be the kth hitting time of state y, defined as S;k) = inf{n > S;kil) X, = y}.

Then, we define the excursion times as Hék) £ S;k) — Sﬁkil), and define events Ej £ {S;k) < oo} for all

k € IN. Then,
P {Ny=m} = px<{s;m> < oo} N {sy“ - oo}) = Po(EmNE,,,).

We observe that (Ej : k € IN) is a decreasing sequence of events, and hence E,, = N]'_ ; E;. Together with this
observation and from the definition of conditional probability, we can write

m
Pe{Ny=m}=Py(EyNE;N---NEuNE;_ ;) =Pi(E1) (HP(Ek |E1N-- mEk1)> P(ES 1| ExN---NEy).
k=2

From the definition, we get Px(E;) = Py {Hy < 00} = fx,. We focus on the conditional probability of the
following event for k € {2,...,m}, which equals

Py(Eg | ExN - MEg 1) = Py(Ex | Ex-1) :P({Hék) < 00} | {Xsékn :yzsékfl) <00, Xg = x}) :Py{Hy{) < °°} = fuy-

Equality in the second line follows from the strong Markov property and the definition of f,,. The result
follows from the aggregation of the above equalities. O

Corollary 1.10. For a homogeneous Markov chain X, we have Px{N, < co} = 1{fyy<1} + (1 - fxy)l{fw:1}-

Proof. We can write the event {N; < oo} as disjoint union of events { N, = n}, to get

P {Ny < co} = ZZ: Po{Ny =n} = 1{fw<1} +(1- fxy)l{fw:l}'

Remark 3. For a homogeneous Markov chain X, we have Px { N, =0} = fy,1 {fw=1}"

Corollary 1.11. The mean number of visits to state y, starting from a state x is
fr
= fy S <L
]ExNy =\, fxy > 1/fyy =1,
O, fxy:(),fyy :1.

Remark 4. For any x € X, we have ExNy = %}Yrﬂ{fxx<1} + ooﬂ{fxle}‘

Remark 5. In particular, this corollary implies the following consequences.



i_ A transient state is visited a finite amount of times almost surely. This follows from Corollary
since P {N,, < oo} =1 for all transient states y € X and any initial state x € X.

ii. A recurrent state is visited infinitely often almost surely. This also follows from Corollary
since P, { N, < oo} =0 for all recurrent states y € X.

iii_ In a finite state Markov chain, not all states may be transient.

Proof. To see this, we assume that for a finite state space X, all states y € X are transient. Then, we
know that Ny, is finite almost surely for all states y € X. It follows that, for any initial state x € X

O<PX{ZNy—°°}—Px(Uyex{Ny—‘”})< ) Pe{Ny =00} =0.
yeX yeX

It follows that ) < Ny is also finite almost surely for all states y € X for finite state space X.
However, we know that } ;. cnc Nx = LkeN Lxex 1{x,=x} = 0. This leads to a contradiction. O

Proposition 1.12. A state y is recurrent iff Y e py;) = oo, and transient iff Y rcN py;) < o0.

(k)

Proof. For any state x € X, we can write pyy = Px{X; = x} = Ex1 {X;=x}- Using monotone convergence
theorem to exchange expectation and summation, we obtain

2 p)(clgc) =[x Z ]l{Xk:x} = ExNx.
keN keIN

Thus, Y yen p,g;) represents the expected number of returns [E,yN, to a state x starting from state x, which

we know to be finite if the state is transient and infinite if the state is recurrent. O
n (k)
Corollary 1.13. For a transient state y € X, the following limits hold limy, e pg((';) =0, and limy 0 Z":% =0.

Proof. For a transient state y € X and any state x € X, we have ExN, =}, cN p%) < oo. Since the series

sum is finite, it implies that the limiting terms in the sequence lim;, oo pg;) = 0. Further, we can write
no (k)
Yiq pg;) < ExNy < M for some M € N and hence lim;, Z"ﬂ% =0. O

Claim 1.14. For any statey € X, let (Hy) : £ € IN) be the sequence of almost surely finite inter-visit times to state y,
and Ny(n) = Yk_q 1ix,—,) be the number of visits to state y in n times. Then, Ny(n) + 1 is a finite mean stopping
time with respect to the sequence (Hy) £ eN).

k)

Proof. We first observe that { Ny (1) +1 =k} can be completely determined by observing H m .,Hé . To
see this, we notice that

k-1 k
(Ny(n) +1=k} = {éley) <n< E@ﬂ} co(HY,...,HM).

Second, we observe that Ny, () +1 <7 + 1 and hence has a finite mean for each n € IN. O

We define Ny, (n) £ Y} ;1 (x,=y)} to be the number of visits to state y in n steps of the Markov process X.
k
Then, E,N, (n) = Y, p).

n (k)
Theorem 1.15. Let x,y € X be such that fy, =1 and y is recurrent. Then, lim, e Z;;% = I}W



Proof. Let y € X be recurrent. The proof consists of three parts. In the first two parts, we will show that
starting from the state y, we have the limiting empirical average of mean number of visits to state y is
im0 %lEyNy(n) = Hl@ In the third part, we will show that for any starting state x € X such that fy, =1,

we have the limiting empirical average of mean number of visits to state y is lim;—eo %IE xNy(n) =,

1
Hyy

Lower bound: We observe that Ny (1) + 1 is a stopping time with respect to inter-visit times (Hy) :¢ € N) from

Upper bound:

Starting from x:

Claim Further, we have Z?]i gn)ﬂ Hy) > n. Applying Wald’s Lemma to the random sum Z?]i g )

n )
, we get B, (Ny(n) + 1)y, > n. Taking limits, we obtain liminf, cp Zk:# > %W

Consider a counting process with truncated recurrence times H, (O = M A Hy () It follows that N, (n) >

Ny (n) sample path wise, and fiy, = E,H, < E,H, = p,,. Further, we have Z Hy) <n+ M.

From Wald’s Lemma, we have

Ey(Ny(n) 4+ 1)1,y <Ey(Ny(n) +1)fi,y <n+ M.

Taking limits, we obtain limsup, .\ Li= ;ny i Letting M grow arbitrarily large, we obtain the
upper bound.
Further, we observe that pxy = f (k=s) pyy Since 1 = fxy = Yken fxy , we have

n n k— n—1
prl;)zzgfxy yy—z yy Z fx Zpéy ZP )3 fxy

=0 k—s=1 s=0 k>n—s

. . ) . ool vl
Since the series } e fry’ converges, we get limy,,co === = limy 00 =57

n)+1 (0)
Hy
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