
Lecture-23: DTMC: Hitting and Recurrence Times

1 Hitting and Recurrence Times

Definition 1.1. Let X : Ω→ XZ+ be a time-homogeneous Markov chain on state space X with transition
probability matrix P. For each state y ∈X, we can define the first hitting time to this state y after time n = 0,
as

Hy , inf{n ∈N : Xn = y} .

Remark 1. We observe that
{

Hy = n
}
∈ Fn , σ(X0, . . . , Xn).

Definition 1.2. For each n ∈N, we can write the probability of first visit to state y at time n from the initial
state x, as

f (n)xy , P(
{

Hy = n
} ∣∣ {X0 = x}) = Px

{
Hy = n

}
.

Definition 1.3. The probability that the Markov chain X hits state y eventually, starting from initial state x
is

fxy , Px
{

Hy < ∞
}
= Px(∪n∈N{Hy = n}) = ∑

n∈N

Px
{

Hy = n
}
= ∑

n∈N

f (n)xy .

Remark 2. If fxy = Px
{

Hy < ∞
}
= 1 for all initial states x ∈ X, then Hy is a stopping time.

Definition 1.4. The distribution (( f (n)xy : n ∈N),1 − fxy) is called the first passage time distribution for

hitting state y from initial state x. The distribution (( f (n)xx : n ∈N),1− fxx) is called the first recurrence time
distribution for return to initial state x.

Definition 1.5. A state is called recurrent if fxx = 1, and is called transient if fxx < 1. For a recurrent state
x ∈ X, we can define mean recurrence time as

µxx , Ex Hx = ∑
n∈N

nPx {Hx = n} = ∑
n∈N

n f (n)xx .

If the mean recurrence time for a recurrent state x is finite then the state x is called positive recurrent, and
null recurrent otherwise.

Definition 1.6. Let S(0)
y = 0 and define S(k)

y to be the kth hitting time of state y, defined as

S(k)
y , inf

{
n > S(k−1)

y : Xn = y
}

, k ∈N.

We can also define the kth excursion time as H(k)
y , S(k)

y − S(k−1)
y , for all k ∈N.

Lemma 1.7. The sequence of random variables
{

H(k)
y ∈ΩN : k > 2

}
is i.i.d..

Proof. We will show that H(k)
y and H(k+1)

y are independent for any k > 2, and the rest follows from induction.

Definition 1.8. For a process X : Ω→ XN, the number of visits to a state y ∈ X in n time steps and its limit
as n→∞ are defined as

Ny(n),
n

∑
k=1

1{Xk=y}, Ny , lim
n

Ny(n) = ∑
k∈N

1{Xk=y}.
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Proposition 1.9. The total number of visits to a state y ∈ X is denoted by Ny = ∑n∈N 1{Xn=y}. Then, for each
m ∈Z+, we have

Px{Ny = m} =
{

1− fxy, m = 0,
fxy f m−1

yy (1− fyy), m ∈N.

Proof. Conditioned on X0 = x, the first passage time Hy to state y being finite is a Bernoulli random variable
with probability fxy. The time of the mth return to the state y is a recurrence time for each m ∈ Z+. From
strong Markov property, each return to state y is independent of the past. Hence, each return to state y in a
finite time is an iid Bernoulli random variable with probability fyy. It follows that the number of recurrences
to state y is the time for first failure to return. Conditioned on initial state being X0 = y, the distribution of
Ny is geometric random variable with failure probability 1− fyy.

Proof. We can write Px
{

Ny = 0
}
= Px

{
Hy = ∞

}
= 1 − fxy. For m ∈ N, we consider Px

{
Ny > m

}
. Let

S(0)
y = 0 and define S(k)

y to be the kth hitting time of state y, defined as S(k)
y , inf

{
n > S(k−1)

y : Xn = y
}

.

Then, we define the excursion times as H(k)
y , S(k)

y − S(k−1)
y , and define events Ek ,

{
S(k)

y < ∞
}

for all
k ∈N. Then,

Px
{

Ny = m
}
= Px(

{
S(m)

y < ∞
}
∩
{

Sm+1
y = ∞

}
) = Px(Em ∩ Ec

m+1).

We observe that (Ek : k ∈N) is a decreasing sequence of events, and hence Em = ∩m
k=1Ek. Together with this

observation and from the definition of conditional probability, we can write

Px
{

Ny = m
}
= Px(E1∩E2∩ · · · ∩Em ∩Ec

m+1) = Px(E1)

(
m

∏
k=2

P(Ek
∣∣ E1 ∩ · · · ∩ Ek−1)

)
P(Ec

m+1
∣∣ E1∩ · · · ∩Em).

From the definition, we get Px(E1) = Px
{

Hy < ∞
}
= fxy. We focus on the conditional probability of the

following event for k ∈ {2, . . . ,m}, which equals

Px(Ek
∣∣ E1∩ · · · ∩Ek−1) = Px(Ek

∣∣ Ek−1) = P(
{

H(k)
y < ∞

} ∣∣ {X
S(k−1)

y
= y,S(k−1)

y < ∞, X0 = x
}
) = Py

{
H(k)

y < ∞
}
= fyy.

Equality in the second line follows from the strong Markov property and the definition of fyy. The result
follows from the aggregation of the above equalities.

Corollary 1.10. For a homogeneous Markov chain X, we have Px{Ny < ∞} = 1{ fyy<1} + (1− fxy)1{ fyy=1}.

Proof. We can write the event {Ny < ∞} as disjoint union of events {Ny = n}, to get

Px{Ny < ∞} = ∑
n∈Z+

Px{Ny = n} = 1{ fyy<1} + (1− fxy)1{ fyy=1}.

Remark 3. For a homogeneous Markov chain X, we have Px
{

Ny = ∞
}
= fxy1{ fyy=1}.

Corollary 1.11. The mean number of visits to state y, starting from a state x is

Ex Ny =


fxy

1− fyy
, fyy < 1,

∞, fxy > 1, fyy = 1,
0, fxy = 0, fyy = 1.

Remark 4. For any x ∈ X, we have Ex Nx =
fxx

1− fxx
1{ fxx<1} + ∞1{ fxx=1}.

Remark 5. In particular, this corollary implies the following consequences.
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i A transient state is visited a finite amount of times almost surely. This follows from Corollary 1.10,
since Px

{
Ny < ∞

}
= 1 for all transient states y ∈ X and any initial state x ∈ X.

ii A recurrent state is visited infinitely often almost surely. This also follows from Corollary 1.10,
since Py

{
Ny < ∞

}
= 0 for all recurrent states y ∈ X.

iii In a finite state Markov chain, not all states may be transient.

Proof. To see this, we assume that for a finite state space X, all states y ∈ X are transient. Then, we
know that Ny is finite almost surely for all states y ∈ X. It follows that, for any initial state x ∈ X

0 6 Px

{
∑

y∈X
Ny = ∞

}
= Px(∪y∈X

{
Ny = ∞

}
)6 ∑

y∈X
Px
{

Ny = ∞
}
= 0.

It follows that ∑x∈X Nx is also finite almost surely for all states y ∈ X for finite state space X.
However, we know that ∑x∈X Nx = ∑k∈N ∑x∈X 1{Xk=x} = ∞. This leads to a contradiction.

Proposition 1.12. A state y is recurrent iff ∑k∈N p(k)yy = ∞, and transient iff ∑k∈N p(k)yy < ∞.

Proof. For any state x ∈ X, we can write p(k)xx = Px{Xk = x} = Ex1{Xk=x}. Using monotone convergence
theorem to exchange expectation and summation, we obtain

∑
k∈N

p(k)xx = Ex ∑
k∈N

1{Xk=x} = Ex Nx.

Thus, ∑k∈N p(k)xx represents the expected number of returns Ex Nx to a state x starting from state x, which
we know to be finite if the state is transient and infinite if the state is recurrent.

Corollary 1.13. For a transient state y ∈ X, the following limits hold limn→∞ p(n)xy = 0, and limn→∞
∑n

k=1 p(k)xy
n = 0.

Proof. For a transient state y ∈ X and any state x ∈ X, we have Ex Ny = ∑n∈N p(n)xy < ∞. Since the series

sum is finite, it implies that the limiting terms in the sequence limn→∞ p(n)xy = 0. Further, we can write

∑n
k=1 p(k)xy 6 Ex Ny 6 M for some M ∈N and hence limn→∞

∑n
k=1 p(k)xy

n = 0.

Claim 1.14. For any state y ∈X, let (H(`)
y : ` ∈N) be the sequence of almost surely finite inter-visit times to state y,

and Ny(n) = ∑n
k=1 1{Xk=y} be the number of visits to state y in n times. Then, Ny(n) + 1 is a finite mean stopping

time with respect to the sequence (H(`)
y : ` ∈N).

Proof. We first observe that
{

Ny(n) + 1 = k
}

can be completely determined by observing H(1)
y , . . . , H(k)

y . To
see this, we notice that

{
Ny(n) + 1 = k

}
=

{
k−1

∑
`=1

H(`)
y 6 n <

k

∑
`=1

H(`)
y

}
∈ σ(H(1)

y , . . . , H(k)
y ).

Second, we observe that Ny(n) + 1 6 n + 1 and hence has a finite mean for each n ∈N.

We define Ny(n), ∑n
k=1 1{Xk=y} to be the number of visits to state y in n steps of the Markov process X.

Then, Ex Ny(n) = ∑n
k=1 p(k)xy .

Theorem 1.15. Let x,y ∈ X be such that fxy = 1 and y is recurrent. Then, limn→∞
∑n

k=1 p(k)xy
n = 1

µyy
.
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Proof. Let y ∈ X be recurrent. The proof consists of three parts. In the first two parts, we will show that
starting from the state y, we have the limiting empirical average of mean number of visits to state y is
limn→∞

1
n EyNy(n) = 1

µyy
. In the third part, we will show that for any starting state x ∈ X such that fxy = 1,

we have the limiting empirical average of mean number of visits to state y is limn→∞
1
n Ex Ny(n) = 1

µyy
.

Lower bound: We observe that Ny(n) + 1 is a stopping time with respect to inter-visit times (H(`)
y : ` ∈ N) from

Claim 1.14. Further, we have ∑
Ny(n)+1
`=1 H(`)

y > n. Applying Wald’s Lemma to the random sum ∑
Ny(n)+1
`=1 H(`)

y

, we get Ey(Ny(n) + 1)µyy > n. Taking limits, we obtain liminfn∈N
∑n

k=1 p(k)yy
n > 1

µyy
.

Upper bound: Consider a counting process with truncated recurrence times H̄(`)
y = M∧H(`)

y . It follows that N̄y(n)>

Ny(n) sample path wise, and µ̄yy , EyH̄y 6 Ey Hy = µyy. Further, we have ∑
N̄y(n)+1
`=1 H̄(`)

y 6 n + M.
From Wald’s Lemma, we have

Ey(Ny(n) + 1)µ̄yy 6 Ey(N̄y(n) + 1)µ̄yy 6 n + M.

Taking limits, we obtain limsupn∈N

∑n
k=1 p(k)xy

n 6 1
µ̄yy

. Letting M grow arbitrarily large, we obtain the
upper bound.

Starting from x: Further, we observe that p(k)xy = ∑k−1
s=0 f (k−s)

xy p(s)yy . Since 1 = fxy = ∑k∈N f (k)xy , we have

n

∑
k=1

p(k)xy =
n

∑
k=1

k−1

∑
s=0

f (k−s)
xy p(s)yy =

n−1

∑
s=0

p(s)yy

n−s

∑
k−s=1

f (k−s)
xy =

n−1

∑
s=0

p(s)yy −
n−1

∑
s=0

p(s)yy ∑
k>n−s

f (k)xy .

Since the series ∑k∈N f (k)xy converges, we get limn→∞
∑n

k=1 p(k)xy
n = limn→∞

∑n
k=1 p(k)yy

n .
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