
Lecture-24: DTMC: Irreducibility and Aperiodicity

1 Communicating classes

For states x,y ∈ X, it is said that state y is accessible from state x if p(n)xy > 0 for some n ∈Z+, and denoted
by x→ y. If two states x,y ∈ X are accessible to each other, they are said to communicate with each other,
denoted by x↔ y.

1. A set of states that communicate are called a communicating class.

2. A communicating class C is called closed if no edges leave this class. That is, for all x ∈ C and y /∈ C,
we have pxy = 0.

3. An open communicating class is not closed.

Proposition 1.1. Communication is an equivalence relation.

Proof. Relation on state space X is a subset of product of sets X× X. Communication is a relation on state
space X, as it relates two states x,y ∈ X. To show equivalence, we have to show reflexivity, symmetry, and
transitivity of the relation.

Symmetry: Further, if x↔ y, then we know that x→ y and y→ x and hence y↔ x. Hence, the symmetry of the
relation follows.

Transitivity: For transitivity, suppose x↔ y and y↔ z. Let m,n ∈ Z+ such that p(m)
xy > 0 and p(n)yz > 0. Then by

Chapman Kolmogorov equation, we have

p(m+n)
xz = ∑

w∈X
p(m)

xw p(n)wz > p(m)
xy p(n)yz > 0.

This implies x→ z, and using similar arguments one can show that z→ x, and the transitivity follows.

Reflexivity: If this relation has a single element, then it is obvious. If not, then for x↔ y, we have Since p(n)xy > 0

and p(m)
yx > 0 for some m,n∈Z+. Therefore, p(n+m)

xx > p(n)xy p(m)
yx > 0 and hence we have x↔ x, implying

the reflexivity of the relation.

Hence the communication relation partitions state space X into equivalence classes. Each equivalence
class is called a communicating class. A property of states is said to be a class property if for each commu-
nicating class C, either all states in C have the property, or none do.

1.1 Irreducibility and periodicity

A Markov chain with a single class is called an irreducible Markov chain. That is, for any two states x,y∈X,
there exists an integer n ∈N such that p(n)xy > 0. That is, any state y can be reached from any state x using
transitions of positive probability.

Let T (x),
{

n ∈N : p(n)xx > 0
}

be the set of times when the chain can possibly return to the initial state
x. The period of any state x ∈ X is defined as

d(x), gcdT (x) = gcd{n ∈N : p(n)xx > 0}.

We define d(x) = ∞, if p(n)xx = 0 for all n ∈N. A state x ∈ X is called aperiodic if the period d(x) is 1.
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Proposition 1.2. If x↔ y, then d(x) = d(y). That is, periodicity is a class property.

Proof. Let m,n ∈N be such that p(m)
xy p(n)yx > 0. Suppose s ∈ T (x), that is p(s)xx > 0. Then

p(n+m)
yy > p(n)yx p(m)

xy > 0, p(n+s+m)
yy > p(n)yx p(s)xx p(m)

xy > 0.

Hence d(y)|n + m and d(y)|n + s + m, and hence d(y)|s for any s ∈ T (x). In particular, it implies that
d(y)|d(x). By symmetrical arguments, we get d(x)|d(y). Hence d(x) = d(y).

For an irreducible chain, the period of the chain is defined to be the period which is common to all states.
An irreducible Markov chain is called aperiodic if the single communicating class is aperiodic.

Proposition 1.3. If the transition matrix P is aperiodic and irreducible, then there is an integer r0 such that p(r)xy > 0
for all x,y ∈ X and r > r0.

1.2 Transient and recurrent states

Proposition 1.4. Transience and recurrence are class properties.

Proof. Let us start with proving recurrence is a class property. Let x be a recurrent state and let x ↔ y.
Hence there exist some m,n > 0, such that P(m)

xy > 0 and p(n)yx > 0. As a consequence of the recurrence,

∑s∈N p(s)xx = ∞. It follows that y is recurrent by observing

∑
s∈N

p(m+n+s)
yy > ∑

s∈N

p(n)yx p(s)xx P(m)
xy = ∞.

Now, if x were transient instead, we conclude that y is also transient by the following observation

∑
s∈N

p(s)yy 6
∑s∈N p(m+n+s)

xx

p(n)yx P(m)
xy

< ∞.

Corollary 1.5. If y is recurrent, then for any state x such that y→ x, then x→ y and fxy = 1.

Proof. Since y→ x, there exists an integer n ∈Z+ such that probability of hitting state x starting from state
y in n-steps without revisiting state y is positive. That is,

a(n)yx , Py {Xn = x, Xn−1 6= y, . . . , X1 6= y} = Py
{

Hy > n, Xn = x
}
> 0.

Suppose fxy < 1, then we have

1− fyy = Py
{

Hy = ∞
}
> Py

{
Hy = ∞, Xn = x

}
= Px

{
Hy = ∞

}
Py
{

Hy > n, Xn = x
}
= a(n)yx (1− fxy) > 0.

This is a contradiction since state y is recurrent. This implies that fxy = 1 and hence x→ y.

Corollary 1.6. Let x,y∈X be in the same communicating class and the state y is recurrent. Then, limn∈N
∑n

k=1 p(k)xy
n =

1
µyy

. Furthermore, if the state y is aperiodic, then limn∈N p(n)xy = 1
µyy

.

Proof. Since y is recurrent and y→ x, it follow that fxy = 1 from the previous Lemma. From the Theorem

1.7 in previous lecture, it follows that limn∈N
∑n

k=1 p(k)xy
n = 1

µyy
.

Let the period of the state y be d. Then we know that there exists a positive integer r0 such that for all
n > r0, we have p(nd)

yy > 0.

Theorem 1.7. The states in a communicating class are of one of the following types; all transient, or all null recurrent,
or all positive recurrent.
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Proof. It suffices to show that if x,y belong to the same communicating class and y is null recurrent, then x
is null recurrent as well. We take r, s ∈N, such that p(r)yx P(s)

xy > 0. It follows that pr+`+s
yy > p(r)yx p(`)xx P(s)

xy for all
` ∈N. Hence, for any n > r + s, we have

1
n

n

∑
k=1

p(k)yy >
1
n

n

∑
k=r+s+1

p(k)yy >
(

n− r− s
n

)(
1

n− r− s

n−r−s

∑
`=1

p(`)xx

)
p(r)yx P(s)

xy .

Since y is null recurrent LHS goes to zero as n increases, which implies limn∈N
1
n ∑n

`=1 p(`)xx = 0. Hence, x is
null recurrent as well.
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