Lecture-25: DTMC: Invariant Distribution

1 Invariant Distribution

Let $X: \Omega \rightarrow X^{Z_{+}}$be a time-homogeneous Markov chain on state space X with transition probability matrix P. A probability distribution $\pi: X \rightarrow[0,1]$ such that $\sum_{x \in X} \pi_{x}=1$ is said to be stationary distribution or invariant distribution for the Markov chain X if $\pi=\pi P$, that is $\pi_{y}=\sum_{x \in x} \pi_{x} p_{x y}$ for all $y \in X$.

Remark 1. Facts about the invariant distribution π.

i. The global balance equation $\pi=\pi P$ is a matrix equation, that is we have a collection of $|X|$ equations $\pi_{y}=\sum_{x \in X} \pi_{x} p_{x y}$ for each $y \in X$.
ii_ Balance equation across cuts is $\pi_{y}\left(1-p_{y y}\right)=\pi_{y} \sum_{x \neq y} p_{y x}=\sum_{x \neq y} \pi_{x} p_{x y}$.
iii_ The invariant distribution π is left eigenvector of stochastic matrix P with the largest eigenvalue 1 . The all ones vector is the right eigenvector of this stochastic matrix P for the eigenvalue 1 .
iv_ From the Chapman-Kolmogorov equation for initial probability vector π, we have $\pi=\pi P^{n}$ for $n \in \mathbb{N}$. That is, if $P\left\{X_{0}=x\right\}=\pi_{x}$ for each $x \in X$, then $P_{\pi}\left\{X_{n}=y\right\}=\pi_{y}$ for each $y \in X$ and all $n \in \mathbb{Z}_{+}$, since $P_{v}\left\{X_{n}=y\right\}=\sum_{x \in x} v(x) p_{x y}^{(n)}$.
v_ Resulting process with initial distribution π is stationary, and hence have shift-invariant finite dimensional distributions. For example, for any $k, n \in \mathbb{Z}_{+}$and $x_{0}, \ldots, x_{n} \in \mathcal{X}$, we have

$$
P_{\pi}\left\{X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right\}=P_{\pi}\left\{X_{k}=x_{0}, \ldots, X_{k+n}=x_{n}\right\}=\pi_{x_{0}} p_{x_{0} x_{1}} \ldots p_{x_{n-1} x_{n}} .
$$

vi. If the Markov chain is irreducible, with $\pi_{x}>0$ for some $x \in X$. Then for any $y \in X$, we have $p_{x y}^{(m)}>0$ for some $m \in \mathbb{N}$. Hence, $\pi_{y} \geqslant \pi_{x} p_{x y}^{(m)}>0$. That is, the entire invariant vector is positive.
vii. Any scaled version of π satisfies the global balance equation. Therefore, for any invariant vector π, the sum $\sum_{x \in x} \pi_{x}$ must be finite for positive recurrent Markov chains, to normalize such vectors and get a unique invariant measure.

Theorem 1.1. An irreducible Markov chain with transition probability matrix P is positive recurrent iff there exists a unique invariant probability measure π on state space X that satisfies global balance equation $\pi=\pi P$ and $\pi_{x}=$ $\frac{1}{\mu_{x x}}>0$ for all $x \in X$.
Proof. We will first show that positive recurrence implies the existence of invariant distribution, and then its converse.

Implication: Let X be a positive recurrent Markov chain on state space X, with initial state $X_{0}=x$. We define $N_{y}(n) \triangleq \sum_{k=1}^{n} 1\left\{X_{k}=y\right\}$ to be the number of visits to state $y \in X$ in the first n steps of the Markov chain. It follows that $\sum_{y \in x} N_{y}(n)=n$ for each $n \in \mathbb{N}$. Let H_{x} be the first recurrence time to state x, then we have $N_{x}\left(H_{x}\right)=1$ and $\sum_{y \in x} N_{y}\left(H_{x}\right)=H_{x}$.

Existence: We denote $v_{y} \triangleq \mathbb{E}_{x}\left[N_{y}\left(H_{x}\right)\right]$ for each $y \in \mathcal{X}$. We observe that $v_{y} \geqslant 0$ for each state $y \in \mathcal{X}$, in particular $v_{x}=1$, and $\sum_{y \in x} v_{y}=\mathbb{E}_{x} H_{x}=\mu_{x x}<\infty$ since X is positive recurrent. We will show that
the vector $v=\left(v_{x}: x \in X\right)$ satisfies the global balance equations $v=v P$, and since v is summable, $\pi=\frac{v}{\sum_{x \in X} v_{x}}$ is an invariant distribution for the Markov chain X. To see that the vector v satisfies the global balance equations, we observe from the monotone convergence theorem

$$
v_{y}=\mathbb{E}_{x} N_{y}\left(H_{x}\right)=\mathbb{E}_{x} \sum_{n \in \mathbb{N}} \mathbb{1}_{\left\{X_{n}=y, n \leqslant H_{x}\right\}}=\sum_{n \in \mathbb{N}} P_{x}\left\{X_{n}=y, n \leqslant H_{x}\right\}
$$

Let $\lambda_{x y}^{(n)} \triangleq P_{x}\left\{X_{n}=y, n \leqslant H_{x}\right\}$. Observe that $\lambda_{x y}^{(1)}=p_{x y}$ for each $y \in X$. For $n \geqslant 2$, we have

$$
\begin{aligned}
\lambda_{x y}^{(n)} & =\sum_{z \neq x} P_{x}\left\{X_{n}=y, X_{n-1}=z, n \leqslant H_{x}\right\} \\
& =\sum_{z \neq x} P\left(\left\{X_{n}=y\right\} \mid\left\{X_{n-1}=z, n \leqslant H_{x}, X_{0}=x\right\}\right) P_{x}\left\{X_{n-1}=z, n \leqslant H_{x}\right\} \\
& =\sum_{z \neq x} P\left(\left\{X_{n}=y\right\} \mid\left\{X_{n-1}=z\right\}\right) P_{x}\left\{X_{n-1}=z, n-1 \leqslant H_{x}\right\}=\sum_{z \neq x} \lambda_{x z}^{(n-1)} p_{z y} .
\end{aligned}
$$

From the definition of $\lambda_{x y}^{(n)}$, we have $v_{y}=\sum_{n \in \mathbb{N}} \lambda_{x y}^{(n)}$ for each $y \in X$. Therefore,

$$
v_{y}=p_{x y}+\sum_{n \geqslant 2} \sum_{z \neq x} \lambda_{x z}^{(n-1)} p_{z y}=v_{x} p_{x y}+\sum_{z \neq x} v_{z} p_{z y}=\sum_{x \in X} v_{x} p_{x y}
$$

Hence, $\pi=\frac{v}{\sum_{x \in x} v_{x}}$ is an invariant measure of the transition matrix P, and $\pi_{x}=\frac{v_{x}}{\sum_{y \in x} v_{y}}=\frac{1}{\mu_{x x}}>0$.
Uniqueness: Next, we show that this is a unique invariant measure independent of the initial state x, and hence $\pi_{y}=\frac{1}{\mu_{y y}}>0$ for all $y \in \mathcal{X}$. For uniqueness, we observe from the Chapman-Kolmogorov equations and invariance of π that $\pi=\frac{1}{n} \pi\left(P+P^{2}+\cdots+P^{n}\right)$. Hence,

$$
\pi_{y}=\sum_{x \in X} \pi_{x} \frac{1}{n} \sum_{k=1}^{n} p_{x y}^{(k)}, y \in X
$$

Taking limit $n \rightarrow \infty$ on both sides, and exchanging limit and summation on right hand side using bounded convergence theorem for summable series v, we get for all $y \in \mathcal{X}$

$$
\pi_{y}=\frac{1}{\mu_{y y}} \sum_{x \in x} v_{x}=\frac{1}{\mu_{y y}}>0
$$

Converse: Let π be the positive invariant distribution of Markov chain X. Then, if the Markov chain was transient or null recurrent, we would have $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{x y}^{(k)}=0$. Since π is an invariant vector, we get $\pi=\pi P^{k}$ for each $k \in \mathbb{N}$ and hence $\pi=\pi \frac{1}{n} \sum_{k=1}^{n} P^{k}$. Taking limit on both sides, we have $\pi=0$, yielding a contradiction for its positivity.

Corollary 1.2. An irreducible Markov chain on a finite state space X has a unique and positive stationary distribution π.

An irreducible, aperiodic, positive recurrent Markov chain is called ergodic.

Remark 2. Additional remarks about the stationary distribution π.
i. For a Markov chain with multiple positive recurrent communicating classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$, one can find the positive equilibrium distribution for each class, and extend it to the entire state space X denoting it by π_{k} for class $k \in[m]$. It is easy to check that any convex combination $\pi=\sum_{k=1}^{m} \alpha_{k} \pi_{k}$ satisfies the global balance equation $\pi=\pi P$, where $\alpha_{k} \geqslant 0$ for each $k \in[m]$ and $\sum_{k=1}^{m} \alpha_{k}=1$. Hence, a Markov chain with multiple positive recurrent classes have a convex set of invariant probability measures, with the individual invariant distribution π_{k} for each positive recurrent class $k \in[m]$ being the extreme points.
ii_ Let $\mu(0)=e_{x}$, that is let the initial state of the positive recurrent Markov chain be $X_{0}=x$. Then, we know that

$$
\pi_{y}=\frac{1}{\mu_{y y}}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{x y}^{(k)}=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{x} N_{y}(n)
$$

That is, π_{y} is limiting average of number of visits to state $y \in X$.
iii_ If a positive recurrent Markov chain is aperiodic, then limiting probability of being in a state y is its invariant probability, that is $\pi_{y}=\lim _{n \rightarrow \infty} p_{x y}^{(n)}$.

Theorem 1.3. For an ergodic Markov chain X with invariant distribution π, and nth step distribution $\mu(n)$, we have $\lim _{n \rightarrow \infty} \mu(n)=\pi$ in the total variation distance.
Proof. Consider independent time homogeneous Markov chains $X: \Omega \rightarrow X^{\mathbb{Z}_{+}}$and $Y: \Omega \rightarrow X^{\mathbb{Z}_{+}}$each with transition matrix P. The initial state of Markov chain X is assumed to be $X_{0}=x$, whereas the Markov chain Y is assumed to have an initial distribution π. It follows that Y is a stationary process, while X is not. In particular,

$$
\mu_{y}(n)=P_{x}\left\{X_{n}=y\right\}=p_{x y}^{(n)}, \quad P_{\pi}\left\{Y_{n}=y\right\}=\pi_{y}
$$

Let $\tau=\inf \left\{n \in \mathbb{Z}_{+}: X_{n}=Y_{n}\right\}$ be the first time that two Markov chains meet, called the coupling time.
Finiteness: First, we show that the coupling time is almost surely finite. To this end, we define a a new Markov chain on state space $X \times X$ with transition probability matrix Q such that $q((x, w),(y, z))=p_{x y} p_{w z}$ for each pair of states $(x, w),(y, z) \in X \times X$. The n-step transition probabilities for this couples Markov chain are given by

$$
q^{(n)}((x, w),(y, z)) \triangleq p_{x y}^{(n)} p_{w z}^{(n)}
$$

Ergodicity: Since the Markov chain X with transition probability matrix P is irreducible and aperiodic, for each $x, y, w, z \in X$ there exists an $n_{0} \in \mathbb{Z}_{+}$such that $q^{(n)}((x, w),(y, z))=p_{x y}^{(n)} p_{w z}^{(n)}>0$ for all $n \geqslant n_{0}$ from a previous Lemma on aperiodicity. Hence, the irreducibility and aperiodicity of this new product Markov chain follows.
Invariant: It is easy to check that $\theta(x, w)=\pi_{x} \pi_{w}$ is the invariant distribution for this product Markov chain, since $\theta(x, w)>0$ for each $(x, w) \in \mathcal{X} \times \mathcal{X}, \sum_{x, w \in X} \theta(x, w)=1$, and for each $(y, z) \in \mathcal{X} \times \mathcal{X}$, we have

$$
\sum_{x, w \in X} \theta(x, w) q((x, w),(y, z))=\sum_{x \in X} \pi_{x} p_{x y} \sum_{w \in X} \pi_{w} p_{w z}=\pi_{y} \pi_{z}=\theta(y, z)
$$

Recurrence: This implies that the product Markov chain is positive recurrent, and each state $(x, x) \in \mathcal{X} \times \mathcal{X}$ is reachable with unit probability from any initial state $(y, w) \in \mathcal{X} \times \mathcal{X}$.
In particular, the coupling time is almost surely finite.
Coupled process: Second, we show that from the coupling time onwards, the evolution of two Markov chains is identical in distribution. That is, for each $y \in X$ and $n \in \mathbb{Z}_{+}$,

$$
P_{X_{\tau}}\left\{X_{n}=y, n \geqslant \tau\right\}=P_{Y_{\tau}}\left\{Y_{n}=y, n \geqslant \tau\right\} .
$$

This follows from the strong Markov property for the joint process where τ is stopping time for the joint process $\left(\left(X_{n}, Y_{n}\right): n \in \mathbb{Z}_{+}\right)$such that $X_{\tau}=Y_{\tau}$, and both marginals have the identical transition matrix.
Limit: For any $y \in \mathcal{X}$, we can write the difference as

$$
\left|p_{x y}^{(n)}-\pi_{y}\right|=\left|P_{x}\left\{X_{n}=y, n<\tau\right\}-P_{\pi}\left\{Y_{n}=y, n<\tau\right\}\right| \leqslant 2 P_{\delta_{x}, \pi}(\tau>n)
$$

Since the coupling time is almost surely finite for each initial state $x, y \in \mathcal{X}$, we have $\sum_{n \in \mathbb{N}} P_{\delta_{x}, \pi}\{\tau=n\}=$ 1 and the tail-sum $P_{\delta_{x}, \pi}\{\tau>n\}$ goes to zero as n grows large, and the result follows.

