Lecture-25: DTMC: Invariant Distribution

1 Invariant Distribution

Let $X : \Omega \to X^{\mathbb{Z}_+}$ be a time-homogeneous Markov chain on state space X with transition probability matrix P. A probability distribution $\pi : X \to [0,1]$ such that $\sum_{x \in X} \pi_x = 1$ is said to be **stationary distribution** or invariant distribution for the Markov chain X if $\pi = \pi P$, that is $\pi_y = \sum_{x \in X} \pi_x p_{xy}$ for all $y \in X$.

Remark 1. Facts about the invariant distribution π .

- i_ The global balance equation $\pi = \pi P$ is a matrix equation, that is we have a collection of $|\mathcal{X}|$ equations $\pi_y = \sum_{x \in \mathcal{X}} \pi_x p_{xy}$ for each $y \in \mathcal{X}$.
- ii_ Balance equation across cuts is $\pi_y(1 p_{yy}) = \pi_y \sum_{x \neq y} p_{yx} = \sum_{x \neq y} \pi_x p_{xy}$.
- iii_ The invariant distribution π is left eigenvector of stochastic matrix *P* with the largest eigenvalue 1. The all ones vector is the right eigenvector of this stochastic matrix *P* for the eigenvalue 1.
- iv_ From the Chapman-Kolmogorov equation for initial probability vector π , we have $\pi = \pi P^n$ for $n \in \mathbb{N}$. That is, if $P\{X_0 = x\} = \pi_x$ for each $x \in \mathcal{X}$, then $P_{\pi}\{X_n = y\} = \pi_y$ for each $y \in \mathcal{X}$ and all $n \in \mathbb{Z}_+$, since $P_{\nu}\{X_n = y\} = \sum_{x \in \mathcal{X}} \nu(x) p_{xy}^{(n)}$.
- v_− Resulting process with initial distribution π is stationary, and hence have shift-invariant finite dimensional distributions. For example, for any $k, n \in \mathbb{Z}_+$ and $x_0, ..., x_n \in \mathcal{X}$, we have

$$P_{\pi} \{ X_0 = x_0, \dots, X_n = x_n \} = P_{\pi} \{ X_k = x_0, \dots, X_{k+n} = x_n \} = \pi_{x_0} p_{x_0 x_1} \dots p_{x_{n-1} x_n}.$$

- vi_ If the Markov chain is irreducible, with $\pi_x > 0$ for some $x \in \mathcal{X}$. Then for any $y \in \mathcal{X}$, we have $p_{xy}^{(m)} > 0$ for some $m \in \mathbb{N}$. Hence, $\pi_y \ge \pi_x p_{xy}^{(m)} > 0$. That is, the entire invariant vector is positive.
- vii₋ Any scaled version of π satisfies the global balance equation. Therefore, for any invariant vector π , the sum $\sum_{x \in \mathcal{X}} \pi_x$ must be finite for positive recurrent Markov chains, to normalize such vectors and get a unique invariant measure.

Theorem 1.1. An irreducible Markov chain with transition probability matrix P is positive recurrent iff there exists a unique invariant probability measure π on state space \mathfrak{X} that satisfies global balance equation $\pi = \pi P$ and $\pi_x = \frac{1}{\mu_{xx}} > 0$ for all $x \in \mathfrak{X}$.

Proof. We will first show that positive recurrence implies the existence of invariant distribution, and then its converse.

- Implication: Let *X* be a positive recurrent Markov chain on state space \mathfrak{X} , with initial state $X_0 = x$. We define $N_y(n) \triangleq \sum_{k=1}^n 1\{X_k = y\}$ to be the number of visits to state $y \in \mathfrak{X}$ in the first *n* steps of the Markov chain. It follows that $\sum_{y \in \mathfrak{X}} N_y(n) = n$ for each $n \in \mathbb{N}$. Let H_x be the first recurrence time to state *x*, then we have $N_x(H_x) = 1$ and $\sum_{y \in \mathfrak{X}} N_y(H_x) = H_x$.
 - Existence: We denote $v_y \triangleq \mathbb{E}_x[N_y(H_x)]$ for each $y \in \mathcal{X}$. We observe that $v_y \ge 0$ for each state $y \in \mathcal{X}$, in particular $v_x = 1$, and $\sum_{y \in \mathcal{X}} v_y = \mathbb{E}_x H_x = \mu_{xx} < \infty$ since *X* is positive recurrent. We will show that

the vector $v = (v_x : x \in \mathcal{X})$ satisfies the global balance equations v = vP, and since v is summable, $\pi = \frac{v}{\sum_{x \in \mathcal{X}} v_x}$ is an invariant distribution for the Markov chain X. To see that the vector v satisfies the global balance equations, we observe from the monotone convergence theorem

$$v_y = \mathbb{E}_x N_y(H_x) = \mathbb{E}_x \sum_{n \in \mathbb{N}} \mathbb{1}_{\{X_n = y, n \leq H_x\}} = \sum_{n \in \mathbb{N}} P_x \{X_n = y, n \leq H_x\}.$$

Let $\lambda_{xy}^{(n)} \triangleq P_x \{ X_n = y, n \leq H_x \}$. Observe that $\lambda_{xy}^{(1)} = p_{xy}$ for each $y \in \mathfrak{X}$. For $n \geq 2$, we have

$$\lambda_{xy}^{(n)} = \sum_{z \neq x} P_x \{ X_n = y, X_{n-1} = z, n \leq H_x \}$$

= $\sum_{z \neq x} P(\{X_n = y\} \mid \{X_{n-1} = z, n \leq H_x, X_0 = x\}) P_x \{X_{n-1} = z, n \leq H_x \}$
= $\sum_{z \neq x} P(\{X_n = y\} \mid \{X_{n-1} = z\}) P_x \{X_{n-1} = z, n-1 \leq H_x \} = \sum_{z \neq x} \lambda_{xz}^{(n-1)} p_{zy}$

From the definition of $\lambda_{xy}^{(n)}$, we have $v_y = \sum_{n \in \mathbb{N}} \lambda_{xy}^{(n)}$ for each $y \in \mathfrak{X}$. Therefore,

$$v_y = p_{xy} + \sum_{n \ge 2} \sum_{z \ne x} \lambda_{xz}^{(n-1)} p_{zy} = v_x p_{xy} + \sum_{z \ne x} v_z p_{zy} = \sum_{x \in \mathcal{X}} v_x p_{xy}$$

Hence, $\pi = \frac{v}{\sum_{x \in \mathcal{X}} v_x}$ is an invariant measure of the transition matrix *P*, and $\pi_x = \frac{v_x}{\sum_{y \in \mathcal{X}} v_y} = \frac{1}{\mu_{xx}} > 0$. Uniqueness: Next, we show that this is a unique invariant measure independent of the initial state *x*, and hence $\pi_y = \frac{1}{\mu_{yy}} > 0$ for all $y \in \mathcal{X}$. For uniqueness, we observe from the Chapman-Kolmogorov equations and invariance of π that $\pi = \frac{1}{n}\pi(P + P^2 + \dots + P^n)$. Hence,

$$\pi_y = \sum_{x \in \mathcal{X}} \pi_x \frac{1}{n} \sum_{k=1}^n p_{xy}^{(k)}, \ y \in \mathcal{X}.$$

Taking limit $n \to \infty$ on both sides, and exchanging limit and summation on right hand side using bounded convergence theorem for summable series ν , we get for all $y \in \mathcal{X}$

$$\pi_y = \frac{1}{\mu_{yy}} \sum_{x \in \mathcal{X}} \nu_x = \frac{1}{\mu_{yy}} > 0.$$

Converse: Let π be the positive invariant distribution of Markov chain *X*. Then, if the Markov chain was transient or null recurrent, we would have $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} p_{xy}^{(k)} = 0$. Since π is an invariant vector, we get $\pi = \pi P^k$ for each $k \in \mathbb{N}$ and hence $\pi = \pi \frac{1}{n} \sum_{k=1}^{n} P^k$. Taking limit on both sides, we have $\pi = 0$, yielding a contradiction for its positivity.

Corollary 1.2. An irreducible Markov chain on a finite state space X has a unique and positive stationary distribution π .

An irreducible, aperiodic, positive recurrent Markov chain is called ergodic.

Remark 2. Additional remarks about the stationary distribution π .

i₋ For a Markov chain with multiple positive recurrent communicating classes C_1, \ldots, C_m , one can find the positive equilibrium distribution for each class, and extend it to the entire state space \mathcal{X} denoting it by π_k for class $k \in [m]$. It is easy to check that any convex combination $\pi = \sum_{k=1}^m \alpha_k \pi_k$ satisfies the global balance equation $\pi = \pi P$, where $\alpha_k \ge 0$ for each $k \in [m]$ and $\sum_{k=1}^m \alpha_k = 1$. Hence, a Markov chain with multiple positive recurrent classes have a convex set of invariant probability measures, with the individual invariant distribution π_k for each positive recurrent class $k \in [m]$ being the extreme points.

ii₋ Let $\mu(0) = e_x$, that is let the initial state of the positive recurrent Markov chain be $X_0 = x$. Then, we know that

$$\pi_y = \frac{1}{\mu_{yy}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n p_{xy}^{(k)} = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_x N_y(n).$$

That is, π_y is limiting average of number of visits to state $y \in \mathcal{X}$.

iii_ If a positive recurrent Markov chain is aperiodic, then limiting probability of being in a state *y* is its invariant probability, that is $\pi_y = \lim_{n \to \infty} p_{xy}^{(n)}$.

Theorem 1.3. For an ergodic Markov chain X with invariant distribution π , and nth step distribution $\mu(n)$, we have $\lim_{n\to\infty} \mu(n) = \pi$ in the total variation distance.

Proof. Consider independent time homogeneous Markov chains $X : \Omega \to X^{\mathbb{Z}_+}$ and $Y : \Omega \to X^{\mathbb{Z}_+}$ each with transition matrix *P*. The initial state of Markov chain *X* is assumed to be $X_0 = x$, whereas the Markov chain *Y* is assumed to have an initial distribution π . It follows that *Y* is a stationary process, while *X* is not. In particular,

$$\mu_{y}(n) = P_{x} \{ X_{n} = y \} = p_{xy}^{(n)}, \qquad P_{\pi} \{ Y_{n} = y \} = \pi_{y}.$$

Let $\tau = \inf\{n \in \mathbb{Z}_+ : X_n = Y_n\}$ be the first time that two Markov chains meet, called the **coupling time**.

Finiteness: First, we show that the coupling time is almost surely finite. To this end, we define a a new Markov chain on state space $\mathcal{X} \times \mathcal{X}$ with transition probability matrix Q such that $q((x,w), (y,z)) = p_{xy}p_{wz}$ for each pair of states $(x,w), (y,z) \in \mathcal{X} \times \mathcal{X}$. The *n*-step transition probabilities for this couples Markov chain are given by

$$q^{(n)}((x,w),(y,z)) \triangleq p_{xy}^{(n)} p_{wz}^{(n)}.$$

- Ergodicity: Since the Markov chain *X* with transition probability matrix *P* is irreducible and aperiodic, for each $x, y, w, z \in X$ there exists an $n_0 \in \mathbb{Z}_+$ such that $q^{(n)}((x, w), (y, z)) = p_{xy}^{(n)} p_{wz}^{(n)} > 0$ for all $n \ge n_0$ from a previous Lemma on aperiodicity. Hence, the irreducibility and aperiodicity of this new **product** Markov chain follows.
- Invariant: It is easy to check that $\theta(x, w) = \pi_x \pi_w$ is the invariant distribution for this product Markov chain, since $\theta(x, w) > 0$ for each $(x, w) \in \mathfrak{X} \times \mathfrak{X}$, $\sum_{x, w \in \mathfrak{X}} \theta(x, w) = 1$, and for each $(y, z) \in \mathfrak{X} \times \mathfrak{X}$, we have

$$\sum_{x,w\in\mathfrak{X}}\theta(x,w)q((x,w),(y,z))=\sum_{x\in\mathfrak{X}}\pi_xp_{xy}\sum_{w\in\mathfrak{X}}\pi_wp_{wz}=\pi_y\pi_z=\theta(y,z)$$

Recurrence: This implies that the product Markov chain is positive recurrent, and each state $(x, x) \in \mathcal{X} \times \mathcal{X}$ is reachable with unit probability from any initial state $(y, w) \in \mathcal{X} \times \mathcal{X}$.

In particular, the coupling time is almost surely finite.

Coupled process: Second, we show that from the coupling time onwards, the evolution of two Markov chains is identical in distribution. That is, for each $y \in X$ and $n \in \mathbb{Z}_+$,

$$P_{X_{\tau}}\left\{X_n=y,n \geq \tau\right\} = P_{Y_{\tau}}\left\{Y_n=y,n \geq \tau\right\}.$$

This follows from the strong Markov property for the joint process where τ is stopping time for the joint process $((X_n, Y_n) : n \in \mathbb{Z}_+)$ such that $X_{\tau} = Y_{\tau}$, and both marginals have the identical transition matrix.

Limit: For any $y \in \mathcal{X}$, we can write the difference as

$$\left| p_{xy}^{(n)} - \pi_y \right| = \left| P_x \left\{ X_n = y, n < \tau \right\} - P_\pi \left\{ Y_n = y, n < \tau \right\} \right| \leq 2P_{\delta_x, \pi}(\tau > n).$$

Since the coupling time is almost surely finite for each initial state $x, y \in \mathcal{X}$, we have $\sum_{n \in \mathbb{N}} P_{\delta_x, \pi} \{\tau = n\} = 1$ and the tail-sum $P_{\delta_x, \pi} \{\tau > n\}$ goes to zero as n grows large, and the result follows.