Lecture-26: Poisson Processes

1 Simple point processes

Consider the d-dimensional Euclidean space \mathbb{R}^{d}, and the collection of Borel measurable subsets $\mathcal{B}\left(\mathbb{R}^{d}\right)$ of the above Euclidean space.

Definition 1.1. A simple point process is a random countable collection of distinct points $S: \Omega \rightarrow \mathbb{R}^{d^{\mathbb{N}}}$, such that the distance $\left\|S_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$.

Example 1.2 (Simple point process on the half-line). We can simplify this definition for $d=1$. In \mathbb{R}_{+}, one can order the points ($S_{n}: n \in \mathbb{N}$) of the point process S, such that $S_{1}<S_{2}<\cdots<S_{n}<\ldots$, and $\lim _{n \in \mathbb{N}} S_{n}=\infty$. The Borel measurable sets for \mathbb{R}_{+}are generated by the collection of half-open intervals $\left\{(0, t]: t \in \mathbb{R}_{+}\right\}$.

Point processes can model many interesting physical processes.

1. Arrivals at classrooms, banks, hospital, supermarket, traffic intersections, airports etc.
2. Location of nodes in a network, such as cellular networks, sensor networks, etc.

Definition 1.3. Corresponding to a point process S, we denote the number of points in a set $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ by

$$
N(A)=\sum_{n \in \mathbb{N}} 1_{\left\{S_{n} \in A\right\}} \text {, where we have } N(\varnothing)=0 .
$$

Then, $N: \Omega \rightarrow \mathbb{Z}_{+}{ }^{\mathcal{B}\left(\mathbb{R}^{d}\right)}$ is called a counting process for the point process $S: \Omega \rightarrow \mathbb{R}^{d^{\mathbb{N}}}$.
Definition 1.4. A counting process is simple if the underlying process is simple.

Remark 1. Let $N: \Omega \rightarrow \mathbb{Z}_{+}{ }^{\mathcal{B}(x)}$ be the counting process for the point process $S: \Omega \rightarrow X^{\mathbb{N}}$.
i_ Note that the point process S and the counting process N carry the same information.
ii. The distribution of point process S is completely characterized by the finite dimensional distributions $\left(N\left(A_{1}\right), \ldots, N\left(A_{k}\right)\right.$: bounded $\left.A_{1}, \ldots, A_{k} \in \mathcal{B}\right)$ for some finite $k \in \mathbb{N}$.

Example 1.5 (Simple point process on the half-line). The number of points in the half-open interval $(0, t]$ is denoted by

$$
N(t) \triangleq N((0, t])=\sum_{n \in \mathbb{N}} 1_{\left\{S_{n} \in(0, t]\right\}} .
$$

Since the Borel measurable sets $\mathcal{B}\left(\mathbb{R}_{+}\right)$are generated by half-open intervals $\left.\{0, t]: t \in \mathbb{R}_{+}\right\}$, we denote the counting process by $N: \Omega \rightarrow \mathbb{Z}_{+} \mathbb{R}_{+}$, where $N(t)=N((0, t])$. For $s<t$, the number of points in interval $(s, t]$ is $N((s, t])=N((0, t])-N((0, s])=N(t)-N(s)$.

2 Poisson point process

Definition 2.1. A non-negative integer valued random variable $N \in \mathbb{Z}_{+}$is called Poisson if for some constant $\lambda>0$, we have

$$
P\{N=n\}=e^{-\lambda} \frac{\lambda^{n}}{n!} .
$$

Remark 2. It is easy to check that $\mathbb{E} N=\operatorname{Var} N=\lambda$. Furthermore, the moment generating function $M_{N}(t)=$ $\mathbb{E} e^{t N}=e^{\lambda\left(e^{t}-1\right)}$ exists for all $t \in \mathbb{R}$.

Definition 2.2. For any $k \in \mathbb{Z}_{+}$and $n \in \mathbb{Z}_{+}^{k}$, the Poisson point process S of intensity measure Λ is defined by its finite dimensional distribution

$$
P\left\{N\left(A_{1}\right)=n_{1}, \ldots, N\left(A_{k}\right)=n_{k}\right\}=\prod_{i=1}^{k}\left(e^{-\Lambda\left(A_{i}\right) \frac{\Lambda\left(A_{i}\right)^{n_{i}}}{n_{i}}{ }^{!}}\right),
$$

for all bounded mutually disjoint sets $A_{1}, \ldots, A_{k} \in \mathcal{B}$. If $\Lambda(A)=\lambda|A|$, then we call S a homogeneous Poisson point process and λ is its intensity.

Remark 3. Recall that $|A|=\int_{x \in A} d x$ is the volume of the set $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ and for any such A, the intensity measure of this set is scaled volume

$$
\Lambda(A)=\int_{x \in A} \lambda(x) d x
$$

for the intensity density $\lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$. If the intensity density $\lambda(x)=\lambda$ for all $x \in \mathbb{R}^{d}$, then $\Lambda(A)=\lambda|A|$. In particular for partition A_{1}, \ldots, A_{k} for a set A, we have $\Lambda(A)=\sum_{i=1}^{k} \Lambda\left(A_{i}\right)$.
Definition 2.3. A counting process N has the completely independence property, if for any collection of finite disjoint and bounded sets $A_{1}, \ldots, A_{k} \in \mathcal{B}$, the vector $\left(N\left(A_{1}\right), \ldots, N\left(A_{k}\right)\right)$ is independent. That is,

$$
P \bigcap_{i=1}^{k}\left\{N\left(A_{i}\right)=n_{i}\right\}=\prod_{i=1}^{k} P\left\{N\left(A_{i}\right)=n_{i}\right\} .
$$

Remark 4. Let $X=\mathbb{R}^{d}$, then the process $S: \Omega \rightarrow X^{\mathbb{N}}$ is a Poisson point process iff
i. the counting process N has complete independence property, and
ii. for each bounded set $A \in \mathcal{B}$, the random variable $N(A)$ is Poisson with parameter $\Lambda(A)$.

In particular, we have $\mathbb{E} N(A)=\Lambda(A)$ for all subsets $A \in \mathcal{B}$.

2.1 Joint conditional distribution of points in a finite window

Proposition 2.4. For a Poisson point process $S: \Omega \rightarrow X^{\mathbb{N}}$ and any positive integer $k \in \mathbb{Z}_{+}$, consider a window $A \in \mathcal{B}(X)$ be a bounded subset, and subsets $\left(A_{1}, \ldots, A_{k}\right)$ that partition this window. Let $n_{1}, \ldots, n_{k} \in \mathbb{Z}_{+}$such that $n_{1}+\cdots+n_{k}=n$, then

$$
\begin{equation*}
P\left(\left\{N\left(A_{1}\right)=n_{1}, \ldots, N\left(A_{k}\right)=n_{k}\right\} \mid\{N(A)=n\}\right)=\frac{n!}{n_{1}!\ldots n_{k}!} \prod_{i=1}^{k}\left(\frac{\Lambda\left(A_{i}\right)}{\Lambda(A)}\right)^{n_{i}} . \tag{1}
\end{equation*}
$$

Proof. It follows from the definition of joint distribution of $\left(N\left(A_{1}\right), \ldots, N\left(A_{k}\right)\right)$, the fact that $\cap_{i=1}^{k}\left\{N\left(A_{i}\right)=n_{i}\right\} \subseteq$ $\{N(A)=n\}$, and that the intensity measure add over disjoint sets, i.e. $\Lambda(A)=\sum_{i=1}^{k} \Lambda\left(A_{i}\right)$.

Remark 5. Let S be a Poisson point process with intensity measure Λ, and $A_{1}, \ldots, A_{k} \in \mathcal{B}$ be disjoint bounded subsets such that $A=\cup_{i=1}^{k} A_{i}$.
i. From the disjointness of A_{i}, we have $N(A)=N\left(A_{1}\right)+\cdots+N\left(A_{k}\right)$, and from the linearity of expectations, we get

$$
\Lambda(A)=\mathbb{E} N(A)=\sum_{i=1}^{k} \mathbb{E} N\left(A_{i}\right)=\sum_{i=1}^{k} \Lambda\left(A_{i}\right) .
$$

ii- Defining $p_{i} \triangleq \frac{\Lambda\left(A_{i}\right)}{\Lambda(A)}$, we see that $\left(p_{1}, \ldots, p_{k}\right)$ is a probability distribution. We also observe that

$$
p_{i}=P\left(\left\{N\left(A_{i}\right)=1\right\} \mid\{N(A)=1\}\right)=P\left(\left|S \cap A_{i}\right|=1| | S \cap A \mid=1\right) .
$$

If we call the point of S in A as S_{1}, then

$$
p_{i}=P\left(\left\{S_{1} \in A_{i}\right\} \mid\left\{S_{1} \in A\right\}\right) .
$$

In addition, we also observe that

$$
p_{i}^{n_{i}}=P\left(\left\{N\left(A_{i}\right)=n_{i}\right\} \mid\left\{N(A)=n_{i}\right\}\right)=P\left(\left|S \cap A_{i}\right|=n_{i}| | S \cap A \mid=n_{i}\right) .
$$

That is, if $S_{1}, \ldots, S_{n_{i}}$ denote the points of S in A, then

$$
p_{i}^{n_{i}}=P\left(\cap_{j=1}^{n_{i}}\left\{S_{j} \in A_{i}\right\} \mid\left\{S_{1}, \ldots, S_{n_{i}} \in A\right\}\right)=\prod_{j=1}^{n_{i}} P\left(\left\{S_{j} \in A_{i}\right\} \mid\left\{S_{j} \in A\right\}\right) .
$$

iii- We can rewrite the equation (1) as a multinomial distribution, where

$$
P\left(\left\{N\left(A_{1}\right)=n_{1}, \ldots, N\left(A_{k}\right)=n_{k}\right\} \mid\{N(A)=n\}\right)=\binom{n}{n_{1}, \ldots, n_{k}} p_{1}^{n_{1}} \ldots p_{k}^{n_{k}} .
$$

iv_ Let $\mathcal{P}\left(n_{1}, \ldots, n_{k}\right)$ be a collection of all k-partition of $[n]$ such that $\left|P_{i}\right|=n_{i}$ and $n_{1}+\cdots+n_{k}=n$. That is,

$$
\mathcal{P}\left(n_{1}, \ldots, n_{k}\right) \triangleq\left\{\left(P_{1}, \ldots, P_{k}\right) \text { partition of }[n]:\left|P_{i}\right|=n_{i} \text { for all } i \in[k]\right\} .
$$

Then, the multinomial coefficient accounts for number of partitions of n points into sets with n_{1}, \ldots, n_{k} points. That is,

$$
\binom{n}{n_{1}, \ldots, n_{k}}=\left|\mathcal{P}\left(n_{1}, \ldots, n_{k}\right)\right| .
$$

v. We observe that the event $\left\{N\left(A_{i}\right)=n_{i}\right\}=\left\{\left|S \cap A_{i}\right|=n_{i}\right\}$. Hence, we can write

$$
\begin{aligned}
P\left(\cap_{i=1}^{k}\left\{\left|S \cap A_{i}\right|=n_{i}\right\} \mid\{|S \cap A|=n\}\right) & =\binom{n}{n_{1}, \ldots, n_{k}} p_{1}^{n_{1}} \ldots p_{k}^{n_{k}} \\
& =\sum_{\left(E_{1}, \ldots, E_{k}\right) \in \mathcal{P}(S \cap A)} \prod_{i=1}^{k} \prod_{S_{j} \in E_{i}} P\left(\left\{S_{j} \in A_{i}\right\} \mid\left\{S_{j} \in A\right\}\right) .
\end{aligned}
$$

vi. We further observe that $\left(S \cap A_{1}, \ldots, S \cap A_{k}\right) \in \mathcal{P}\left(n_{1}, \ldots, n_{k}\right)$, and hence we can re-write the event

$$
\cap_{i=1}^{k}\left\{N\left(A_{i}\right)=n_{i}\right\}=\cap_{i=1}^{k}\left\{\left|S \cap A_{i}\right|=n_{i}\right\}=\cup_{\left(E_{1}, \ldots, E_{k}\right) \in \mathcal{P}\left(n_{1}, \ldots, n_{k}\right)}\left(\cap_{i=1}^{k}\left\{S \cap A_{i}=E_{i}\right\}\right) .
$$

That is, we can write the conditional probability

$$
\begin{aligned}
P\left(\cap_{i=1}^{k}\left\{N\left(A_{i}\right)=n_{i}\right\} \mid\{N(A)=n\}\right) & =\sum_{\left(E_{1}, \ldots, E_{k}\right) \in \mathcal{P}\left(n_{1}, \ldots, n_{k}\right)} P\left(\cap_{i=1}^{k}\left\{S \cap A_{i}=E_{i}\right\} \mid\{S \cap A=E\}\right) \\
& =\sum_{\left(E_{1}, \ldots, E_{k}\right) \in \mathcal{P}\left(n_{1}, \ldots, n_{k}\right)} P\left(\cap_{i=1}^{k} \cap \mathcal{S}_{j} \in E_{i}\left\{S_{j} \in A_{i}\right\} \mid\{S \cap A=E\}\right) .
\end{aligned}
$$

vii_ Let S_{1}, \ldots, S_{n} be the n points in $E=S \cap A$. Equating the RHS of the above equation term-wise, we obtain that conditioned on each of these points falling inside the window A, the conditional probability of each point falling in partition A_{i} is independent of all other points and given by p_{i}. That is, we have

$$
P\left(\cap_{i=1}^{k} \cap_{S_{j} \in E_{i}}\left\{S_{j} \in A_{i}\right\} \mid\{S \cap A=E\}\right)=\prod_{i=1}^{k} \prod_{S_{j} \in E_{i}} P\left(\left\{S_{j} \in A_{i}\right\} \mid\left\{S_{j} \in A\right\}\right)=\prod_{i=1}^{k} p_{i}^{n_{i}}=\prod_{i=1}^{k}\left(\frac{\Lambda\left(A_{i}\right)}{\Lambda(A)}\right)^{n_{i}} .
$$

It means that given n points in the window A, the location of these points are independently and identically distributed in A according to the distribution $\frac{\Lambda(\cdot)}{\Lambda(A)}$.
viii_ If the Poisson process is homogeneous, the distribution is uniform over the window A.
ix_ For a Poisson process with intensity measure Λ and any bounded set $A \in \mathcal{B}$, we have $N(A)$ a Poisson random variable with parameter $\Lambda(A)$. Given $N(A)$, the location of all the points in $S \cap A$ are i.i.d. with density $\frac{\lambda(x)}{\Lambda(A)}$ for all $x \in A$.

Corollary 2.5. For a homogeneous Poisson point process on the half-line with ordered set of points $\left(S_{(n)} \in \mathbb{R}_{+}: n \in\right.$ \mathbb{N}), we can write the conditional density of ordered points $\left(S_{(1)}, \ldots, S_{(k)}\right)$ given $N(t)=k$ as ordered statistics of iid uniformly distributed random variables. Specifically, we have

$$
\left.f_{S_{(1), \ldots, S_{(k)}}} \mid N(t)=k\right) ~\left(t_{1}, \ldots, t_{k}\right)=k!\prod_{i=1}^{k} \frac{1_{\left\{t_{i} \leqslant t\right\}}}{t} .
$$

Proof. Given $N(t)=k$, we can denote the points of the Poisson process in $(0, t]$ by S_{1}, \ldots, S_{k}. From the above remark, we know that S_{1}, \ldots, S_{k} are i.i.d. uniform in $(0, t]$, conditioned on the number of points $N(t)=k$. Hence, we can write

$$
\left.F_{S_{1}, \ldots, S_{k}} \mid N(t)=k, t_{1}, \ldots, t_{k}\right)=P\left(\cap_{i=1}^{k}\left\{S_{i} \in\left(0, t_{i}\right]\right\} \mid\{N(t)=k\}\right)=\prod_{i=1}^{k} P\left(\left\{S_{i} \in\left(0, t_{i}\right]\right\} \mid\left\{S_{i} \in(0, t]\right\}\right)=\prod_{i=1}^{k} \frac{t_{i}}{t} \mathbb{1}_{\left\{0<t_{i} \leqslant t\right\}} .
$$

For any permutation $\sigma:[k] \rightarrow[k]$, the order statistics of $\left(S_{\sigma(1)}, \ldots, S_{\sigma(k)}\right)$ are identical. Therefore, we can write the following equality for the events

$$
\left\{S_{(i)} \leqslant t_{i}\right\}=\cup_{\sigma:[k] \rightarrow[k] \text { permutation }}\left\{S_{\sigma(i)} \leqslant t_{i}\right\} .
$$

Hence, the result follows since

$$
P\left(\cap_{i=1}^{k}\left\{S_{(i)} \in\left(0, t_{i}\right]\right\} \mid\{N(t)=k\}\right)=\sum_{\sigma:[k] \rightarrow[k]} P\left(\cap_{i=1}^{k}\left\{S_{\sigma(i)} \in\left(0, t_{i}\right]\right\} \mid\{N(t)=k\}\right)
$$

