Lecture-26: Poisson Processes

1 Simple point processes

Consider the *d*-dimensional Euclidean space \mathbb{R}^d , and the collection of Borel measurable subsets $\mathcal{B}(\mathbb{R}^d)$ of the above Euclidean space.

Definition 1.1. A simple point process is a random countable collection of distinct points $S : \Omega \to \mathbb{R}^{d^{\mathbb{N}}}$, such that the distance $||S_n|| \to \infty$ as $n \to \infty$.

Example 1.2 (Simple point process on the half-line). We can simplify this definition for d = 1. In \mathbb{R}_+ , one can order the points $(S_n : n \in \mathbb{N})$ of the point process S, such that $S_1 < S_2 < \cdots < S_n < \ldots$, and $\lim_{n \in \mathbb{N}} S_n = \infty$. The Borel measurable sets for \mathbb{R}_+ are generated by the collection of half-open intervals $\{(0, t] : t \in \mathbb{R}_+\}$.

Point processes can model many interesting physical processes.

- 1. Arrivals at classrooms, banks, hospital, supermarket, traffic intersections, airports etc.
- 2. Location of nodes in a network, such as cellular networks, sensor networks, etc.

Definition 1.3. Corresponding to a point process *S*, we denote the number of points in a set $A \in \mathcal{B}(\mathbb{R}^d)$ by

$$N(A) = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{S_n \in A\}}$$
, where we have $N(\emptyset) = 0$.

Then, $N: \Omega \to \mathbb{Z}_+^{\mathcal{B}(\mathbb{R}^d)}$ is called a **counting process** for the point process $S: \Omega \to \mathbb{R}^{d^{\mathbb{N}}}$.

Definition 1.4. A counting process is **simple** if the underlying process is simple.

Remark 1. Let $N : \Omega \to \mathbb{Z}_+^{\mathcal{B}(\mathcal{X})}$ be the counting process for the point process $S : \Omega \to \mathcal{X}^{\mathbb{N}}$.

- i_ Note that the point process *S* and the counting process *N* carry the same information.
- ii_− The distribution of point process *S* is completely characterized by the finite dimensional distributions $(N(A_1),...,N(A_k))$: bounded $A_1,...,A_k \in \mathcal{B}$) for some finite $k \in \mathbb{N}$.

Example 1.5 (Simple point process on the half-line). The number of points in the half-open interval (0, *t*] is denoted by

$$N(t) \triangleq N((0,t]) = \sum_{n \in \mathbb{N}} \mathbb{1}_{\{S_n \in (0,t]\}}.$$

Since the Borel measurable sets $\mathcal{B}(\mathbb{R}_+)$ are generated by half-open intervals $\{0, t] : t \in \mathbb{R}_+\}$, we denote the counting process by $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$, where N(t) = N((0, t]). For s < t, the number of points in interval (s, t] is N((s, t]) = N((0, t]) - N((0, s]) = N(t) - N(s).

2 Poisson point process

Definition 2.1. A non-negative integer valued random variable $N \in \mathbb{Z}_+$ is called **Poisson** if for some constant $\lambda > 0$, we have

$$P\{N=n\}=e^{-\lambda}\frac{\lambda^n}{n!}.$$

Remark 2. It is easy to check that $\mathbb{E}N = \text{Var } N = \lambda$. Furthermore, the moment generating function $M_N(t) = \mathbb{E}e^{tN} = e^{\lambda(e^t - 1)}$ exists for all $t \in \mathbb{R}$.

Definition 2.2. For any $k \in \mathbb{Z}_+$ and $n \in \mathbb{Z}_+^k$, the **Poisson point process** *S* **of intensity measure** Λ is defined by its finite dimensional distribution

$$P\{N(A_1) = n_1, \dots, N(A_k) = n_k\} = \prod_{i=1}^k \left(e^{-\Lambda(A_i) \frac{\Lambda(A_i)^{n_i}}{n_i!}} \right),$$

for all bounded mutually disjoint sets $A_1, \ldots, A_k \in \mathcal{B}$. If $\Lambda(A) = \lambda |A|$, then we call *S* a **homogeneous Poisson point process** and λ is its intensity.

Remark 3. Recall that $|A| = \int_{x \in A} dx$ is the volume of the set $A \in \mathcal{B}(\mathbb{R}^d)$ and for any such A, the intensity measure of this set is scaled volume

$$\Lambda(A) = \int_{x \in A} \lambda(x) dx,$$

for the intensity density $\lambda : \mathbb{R}^d \to \mathbb{R}_+$. If the intensity density $\lambda(x) = \lambda$ for all $x \in \mathbb{R}^d$, then $\Lambda(A) = \lambda |A|$. In particular for partition A_1, \ldots, A_k for a set A, we have $\Lambda(A) = \sum_{i=1}^k \Lambda(A_i)$.

Definition 2.3. A counting process *N* has the **completely independence property**, if for any collection of finite disjoint and bounded sets $A_1, ..., A_k \in \mathcal{B}$, the vector $(N(A_1), ..., N(A_k))$ is independent. That is,

$$P\bigcap_{i=1}^{k} \{N(A_i) = n_i\} = \prod_{i=1}^{k} P\{N(A_i) = n_i\}$$

Remark 4. Let $\mathfrak{X} = \mathbb{R}^d$, then the process $S : \Omega \to \mathfrak{X}^{\mathbb{N}}$ is a Poisson point process iff

i_ the counting process *N* has complete independence property, and

ii_ for each bounded set $A \in \mathcal{B}$, the random variable N(A) is Poisson with parameter $\Lambda(A)$.

In particular, we have $\mathbb{E}N(A) = \Lambda(A)$ for all subsets $A \in \mathcal{B}$.

2.1 Joint conditional distribution of points in a finite window

Proposition 2.4. For a Poisson point process $S : \Omega \to X^{\mathbb{N}}$ and any positive integer $k \in \mathbb{Z}_+$, consider a window $A \in \mathcal{B}(X)$ be a bounded subset, and subsets (A_1, \ldots, A_k) that partition this window. Let $n_1, \ldots, n_k \in \mathbb{Z}_+$ such that $n_1 + \cdots + n_k = n$, then

$$P(\{N(A_1) = n_1, \dots, N(A_k) = n_k\} \mid \{N(A) = n\}) = \frac{n!}{n_1! \dots n_k!} \prod_{i=1}^k \left(\frac{\Lambda(A_i)}{\Lambda(A)}\right)^{n_i}.$$
 (1)

Proof. It follows from the definition of joint distribution of $(N(A_1), ..., N(A_k))$, the fact that $\bigcap_{i=1}^k \{N(A_i) = n_i\} \subseteq \{N(A) = n\}$, and that the intensity measure add over disjoint sets, i.e. $\Lambda(A) = \sum_{i=1}^k \Lambda(A_i)$.

Remark 5. Let *S* be a Poisson point process with intensity measure Λ , and $A_1, \ldots, A_k \in \mathcal{B}$ be disjoint bounded subsets such that $A = \bigcup_{i=1}^k A_i$.

i₋ From the disjointness of A_i , we have $N(A) = N(A_1) + \cdots + N(A_k)$, and from the linearity of expectations, we get

$$\Lambda(A) = \mathbb{E}N(A) = \sum_{i=1}^{k} \mathbb{E}N(A_i) = \sum_{i=1}^{k} \Lambda(A_i).$$

ii_ Defining $p_i \triangleq \frac{\Lambda(A_i)}{\Lambda(A)}$, we see that (p_1, \dots, p_k) is a probability distribution. We also observe that

$$p_i = P(\{N(A_i) = 1\} | \{N(A) = 1\}) = P(|S \cap A_i| = 1 | |S \cap A| = 1).$$

If we call the point of *S* in *A* as S_1 , then

$$p_i = P(\{S_1 \in A_i\} \mid \{S_1 \in A\})$$

In addition, we also observe that

$$p_i^{n_i} = P(\{N(A_i) = n_i\} \mid \{N(A) = n_i\}) = P(|S \cap A_i| = n_i \mid |S \cap A| = n_i).$$

That is, if S_1, \ldots, S_{n_i} denote the points of *S* in *A*, then

$$p_i^{n_i} = P(\bigcap_{j=1}^{n_i} \{S_j \in A_i\} \mid \{S_1, \dots, S_{n_i} \in A\}) = \prod_{j=1}^{n_i} P(\{S_j \in A_i\} \mid \{S_j \in A\}).$$

iii_ We can rewrite the equation (1) as a multinomial distribution, where

$$P(\{N(A_1) = n_1, \dots, N(A_k) = n_k\} \mid \{N(A) = n\}) = \binom{n}{n_1, \dots, n_k} p_1^{n_1} \dots p_k^{n_k}.$$

iv_ Let $\mathcal{P}(n_1,...,n_k)$ be a collection of all *k*-partition of [n] such that $|P_i| = n_i$ and $n_1 + \cdots + n_k = n$. That is,

 $\mathcal{P}(n_1,\ldots,n_k) \triangleq \{(P_1,\ldots,P_k) \text{ partition of } [n]: |P_i| = n_i \text{ for all } i \in [k]\}.$

Then, the multinomial coefficient accounts for number of partitions of n points into sets with n_1, \ldots, n_k points. That is,

$$\binom{n}{n_1,\ldots,n_k} = |\mathcal{P}(n_1,\ldots,n_k)|.$$

v_− We observe that the event $\{N(A_i) = n_i\} = \{|S \cap A_i| = n_i\}$. Hence, we can write

$$P(\bigcap_{i=1}^{k} \{ |S \cap A_i| = n_i \} \mid \{ |S \cap A| = n \}) = \binom{n}{n_1, \dots, n_k} p_1^{n_1} \dots p_k^{n_k}$$
$$= \sum_{(E_1, \dots, E_k) \in \mathcal{P}(S \cap A)} \prod_{i=1}^{k} \prod_{S_j \in E_i} P(\{S_j \in A_i\} \mid \{S_j \in A\}).$$

vi_ We further observe that $(S \cap A_1, \dots, S \cap A_k) \in \mathcal{P}(n_1, \dots, n_k)$, and hence we can re-write the event

$$\bigcap_{i=1}^{k} \{ N(A_i) = n_i \} = \bigcap_{i=1}^{k} \{ |S \cap A_i| = n_i \} = \bigcup_{(E_1, \dots, E_k) \in \mathcal{P}(n_1, \dots, n_k)} (\bigcap_{i=1}^{k} \{ S \cap A_i = E_i \}).$$

That is, we can write the conditional probability

$$P(\cap_{i=1}^{k} \{N(A_{i}) = n_{i}\} \mid \{N(A) = n\}) = \sum_{(E_{1},...,E_{k})\in\mathcal{P}(n_{1},...,n_{k})} P(\cap_{i=1}^{k} \{S \cap A_{i} = E_{i}\} \mid \{S \cap A = E\})$$
$$= \sum_{(E_{1},...,E_{k})\in\mathcal{P}(n_{1},...,n_{k})} P(\cap_{i=1}^{k} \cap_{S_{j}\in E_{i}} \{S_{j}\in A_{i}\} \mid \{S \cap A = E\}).$$

vii_ Let $S_1, ..., S_n$ be the *n* points in $E = S \cap A$. Equating the RHS of the above equation term-wise, we obtain that conditioned on each of these points falling inside the window *A*, the conditional probability of each point falling in partition A_i is independent of all other points and given by p_i . That is, we have

$$P(\bigcap_{i=1}^{k} \bigcap_{S_{j} \in E_{i}} \{S_{j} \in A_{i}\} \mid \{S \cap A = E\}) = \prod_{i=1}^{k} \prod_{S_{j} \in E_{i}} P(\{S_{j} \in A_{i}\} \mid \{S_{j} \in A\}) = \prod_{i=1}^{k} p_{i}^{n_{i}} = \prod_{i=1}^{k} \left(\frac{\Lambda(A_{i})}{\Lambda(A)}\right)^{n_{i}}$$

It means that given *n* points in the window *A*, the location of these points are independently and identically distributed in *A* according to the distribution $\frac{\Lambda(\cdot)}{\Lambda(A)}$.

- viii_ If the Poisson process is homogeneous, the distribution is uniform over the window A.
 - ix_ For a Poisson process with intensity measure Λ and any bounded set $A \in \mathcal{B}$, we have N(A) a Poisson random variable with parameter $\Lambda(A)$. Given N(A), the location of all the points in $S \cap A$ are *i.i.d.* with density $\frac{\lambda(x)}{\Lambda(A)}$ for all $x \in A$.

Corollary 2.5. For a homogeneous Poisson point process on the half-line with ordered set of points $(S_{(n)} \in \mathbb{R}_+ : n \in \mathbb{N})$, we can write the conditional density of ordered points $(S_{(1)}, \ldots, S_{(k)})$ given N(t) = k as ordered statistics of iid uniformly distributed random variables. Specifically, we have

$$f_{S_{(1)},\dots,S_{(k)} \mid N(t)=k}(t_1,\dots,t_k) = k! \prod_{i=1}^k \frac{1_{\{t_i \le t\}}}{t}$$

Proof. Given N(t) = k, we can denote the points of the Poisson process in (0, t] by S_1, \ldots, S_k . From the above remark, we know that S_1, \ldots, S_k are *i.i.d.* uniform in (0, t], conditioned on the number of points N(t) = k. Hence, we can write

$$F_{S_1,\dots,S_k \mid N(t)=k}(t_1,\dots,t_k) = P(\bigcap_{i=1}^k \{S_i \in (0,t_i]\} \mid \{N(t)=k\}) = \prod_{i=1}^k P(\{S_i \in (0,t_i]\} \mid \{S_i \in (0,t]\}) = \prod_{i=1}^k \frac{t_i}{t} \mathbb{1}_{\{0 < t_i \leqslant t\}}$$

For any permutation $\sigma : [k] \to [k]$, the order statistics of $(S_{\sigma(1)}, \ldots, S_{\sigma(k)})$ are identical. Therefore, we can write the following equality for the events

$$\left\{S_{(i)} \leqslant t_i\right\} = \bigcup_{\sigma:[k] \to [k] \text{ permutation}} \left\{S_{\sigma(i)} \leqslant t_i\right\}.$$

Hence, the result follows since

$$P(\cap_{i=1}^{k} \left\{ S_{(i)} \in (0, t_i] \right\} \mid \{N(t) = k\}) = \sum_{\sigma: [k] \to [k]} P(\cap_{i=1}^{k} \left\{ S_{\sigma(i)} \in (0, t_i] \right\} \mid \{N(t) = k\}).$$