
Lecture-26: Poisson Processes

1 Simple point processes

Consider the d-dimensional Euclidean space Rd, and the collection of Borel measurable subsets B(Rd) of
the above Euclidean space.

Definition 1.1. A simple point process is a random countable collection of distinct points S : Ω→ RdN
,

such that the distance ‖Sn‖ →∞ as n→∞.

Example 1.2 (Simple point process on the half-line). We can simplify this definition for d = 1. In R+,
one can order the points (Sn : n ∈N) of the point process S, such that S1 < S2 < · · · < Sn < . . . , and
limn∈N Sn = ∞. The Borel measurable sets for R+ are generated by the collection of half-open intervals
{(0, t] : t ∈R+}.

Point processes can model many interesting physical processes.

1. Arrivals at classrooms, banks, hospital, supermarket, traffic intersections, airports etc.

2. Location of nodes in a network, such as cellular networks, sensor networks, etc.

Definition 1.3. Corresponding to a point process S, we denote the number of points in a set A ∈ B(Rd) by

N(A) = ∑
n∈N

1{Sn∈A}, where we have N(∅) = 0.

Then, N : Ω→Z+
B(Rd) is called a counting process for the point process S : Ω→RdN

.

Definition 1.4. A counting process is simple if the underlying process is simple.

Remark 1. Let N : Ω→Z+
B(X) be the counting process for the point process S : Ω→ XN.

i Note that the point process S and the counting process N carry the same information.

ii The distribution of point process S is completely characterized by the finite dimensional distribu-
tions (N(A1), . . . , N(Ak) : bounded A1, . . . , Ak ∈ B) for some finite k ∈N.

Example 1.5 (Simple point process on the half-line). The number of points in the half-open interval
(0, t] is denoted by

N(t), N((0, t]) = ∑
n∈N

1{Sn∈(0,t]}.
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Since the Borel measurable sets B(R+) are generated by half-open intervals {0, t] : t ∈R+}, we denote
the counting process by N : Ω→ Z+

R+ , where N(t) = N((0, t]). For s < t, the number of points in
interval (s, t] is N((s, t]) = N((0, t])− N((0, s]) = N(t)− N(s).

2 Poisson point process

Definition 2.1. A non-negative integer valued random variable N ∈Z+ is called Poisson if for some con-
stant λ > 0, we have

P{N = n} = e−λ λn

n!
.

Remark 2. It is easy to check that EN = Var N = λ. Furthermore, the moment generating function MN(t) =
EetN = eλ(et−1) exists for all t ∈R.

Definition 2.2. For any k ∈Z+ and n ∈Zk
+, the Poisson point process S of intensity measure Λ is defined

by its finite dimensional distribution

P{N(A1) = n1, . . . , N(Ak) = nk} =
k

∏
i=1

(
e−Λ(Ai)

Λ(Ai)
ni

ni !

)
,

for all bounded mutually disjoint sets A1, . . . , Ak ∈ B. If Λ(A) = λ |A|, then we call S a homogeneous
Poisson point process and λ is its intensity.

Remark 3. Recall that |A| =
∫

x∈A dx is the volume of the set A ∈ B(Rd) and for any such A, the intensity
measure of this set is scaled volume

Λ(A) =
∫

x∈A
λ(x)dx,

for the intensity density λ : Rd→R+. If the intensity density λ(x) = λ for all x ∈Rd, then Λ(A) = λ |A|. In
particular for partition A1, . . . , Ak for a set A, we have Λ(A) = ∑k

i=1 Λ(Ai).

Definition 2.3. A counting process N has the completely independence property, if for any collection of
finite disjoint and bounded sets A1, . . . , Ak ∈ B, the vector (N(A1), . . . , N(Ak)) is independent. That is,

P
k⋂

i=1

{N(Ai) = ni} =
k

∏
i=1

P{N(Ai) = ni}.

Remark 4. Let X= Rd, then the process S : Ω→ XN is a Poisson point process iff

i the counting process N has complete independence property, and

ii for each bounded set A ∈ B, the random variable N(A) is Poisson with parameter Λ(A).

In particular, we have EN(A) = Λ(A) for all subsets A ∈ B.

2.1 Joint conditional distribution of points in a finite window

Proposition 2.4. For a Poisson point process S : Ω→ XN and any positive integer k ∈ Z+, consider a window
A ∈ B(X) be a bounded subset, and subsets (A1, . . . , Ak) that partition this window. Let n1, . . . ,nk ∈Z+ such that
n1 + · · ·+ nk = n, then

P({N(A1) = n1, . . . , N(Ak) = nk}
∣∣ {N(A) = n}) = n!

n1! . . . nk!

k

∏
i=1

(
Λ(Ai)

Λ(A)

)ni

. (1)
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Proof. It follows from the definition of joint distribution of (N(A1), . . . , N(Ak)), the fact that∩k
i=1 {N(Ai) = ni}⊆

{N(A) = n}, and that the intensity measure add over disjoint sets, i.e. Λ(A) = ∑k
i=1 Λ(Ai).

Remark 5. Let S be a Poisson point process with intensity measure Λ, and A1, . . . , Ak ∈ B be disjoint
bounded subsets such that A = ∪k

i=1 Ai.

i From the disjointness of Ai, we have N(A) = N(A1) + · · · + N(Ak), and from the linearity of
expectations, we get

Λ(A) = EN(A) =
k

∑
i=1

EN(Ai) =
k

∑
i=1

Λ(Ai).

ii Defining pi ,
Λ(Ai)
Λ(A)

, we see that (p1, . . . , pk) is a probability distribution. We also observe that

pi = P({N(Ai) = 1}
∣∣ {N(A) = 1}) = P(|S ∩ Ai| = 1

∣∣ |S ∩ A| = 1).

If we call the point of S in A as S1, then

pi = P({S1 ∈ Ai}
∣∣ {S1 ∈ A}).

In addition, we also observe that

pni
i = P({N(Ai) = ni}

∣∣ {N(A) = ni}) = P(|S ∩ Ai| = ni
∣∣ |S ∩ A| = ni).

That is, if S1, . . . ,Sni denote the points of S in A, then

pni
i = P(∩ni

j=1

{
Sj ∈ Ai

} ∣∣ {S1, . . . ,Sni ∈ A}) =
ni

∏
j=1

P(
{

Sj ∈ Ai
} ∣∣ {Sj ∈ A

}
).

iii We can rewrite the equation (1) as a multinomial distribution, where

P({N(A1) = n1, . . . , N(Ak) = nk}
∣∣ {N(A) = n}) =

(
n

n1, . . . ,nk

)
pn1

1 . . . pnk
k .

iv Let P(n1, . . . ,nk) be a collection of all k-partition of [n] such that |Pi| = ni and n1 + · · · + nk = n.
That is,

P(n1, . . . ,nk), {(P1, . . . , Pk) partition of [n] : |Pi| = ni for all i ∈ [k]} .

Then, the multinomial coefficient accounts for number of partitions of n points into sets with
n1, . . . ,nk points. That is, (

n
n1, . . . ,nk

)
= |P(n1, . . . ,nk)| .

v We observe that the event {N(Ai) = ni} = {|S ∩ Ai| = ni}. Hence, we can write

P(∩k
i=1 {|S ∩ Ai| = ni}

∣∣ {|S ∩ A| = n}) =
(

n
n1, . . . ,nk

)
pn1

1 . . . pnk
k

= ∑
(E1,...,Ek)∈P(S∩A)

k

∏
i=1

∏
Sj∈Ei

P(
{

Sj ∈ Ai
} ∣∣ {Sj ∈ A

}
).

vi We further observe that (S ∩ A1, . . . ,S ∩ Ak) ∈ P(n1, . . . ,nk), and hence we can re-write the event

∩k
i=1 {N(Ai) = ni} = ∩k

i=1 {|S ∩ Ai| = ni} = ∪(E1,...,Ek)∈P(n1,...,nk)
(∩k

i=1 {S ∩ Ai = Ei}).

That is, we can write the conditional probability

P(∩k
i=1 {N(Ai) = ni}

∣∣ {N(A) = n}) = ∑
(E1,...,Ek)∈P(n1,...,nk)

P(∩k
i=1 {S ∩ Ai = Ei}

∣∣ {S ∩ A = E})

= ∑
(E1,...,Ek)∈P(n1,...,nk)

P(∩k
i=1 ∩Sj∈Ei

{
Sj ∈ Ai

} ∣∣ {S ∩ A = E}).
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vii Let S1, . . . ,Sn be the n points in E = S ∩ A. Equating the RHS of the above equation term-wise,
we obtain that conditioned on each of these points falling inside the window A, the conditional
probability of each point falling in partition Ai is independent of all other points and given by pi.
That is, we have

P(∩k
i=1∩Sj∈Ei

{
Sj ∈ Ai

} ∣∣ {S ∩ A = E}) =
k

∏
i=1

∏
Sj∈Ei

P(
{

Sj ∈ Ai
} ∣∣ {Sj ∈ A

}
) =

k

∏
i=1

pni
i =

k

∏
i=1

(
Λ(Ai)

Λ(A)

)ni

.

It means that given n points in the window A, the location of these points are independently and
identically distributed in A according to the distribution Λ(·)

Λ(A)
.

viii If the Poisson process is homogeneous, the distribution is uniform over the window A.

ix For a Poisson process with intensity measure Λ and any bounded set A ∈ B, we have N(A) a
Poisson random variable with parameter Λ(A). Given N(A), the location of all the points in S∩ A
are i.i.d. with density λ(x)

Λ(A)
for all x ∈ A.

Corollary 2.5. For a homogeneous Poisson point process on the half-line with ordered set of points (S(n) ∈R+ : n ∈
N), we can write the conditional density of ordered points (S(1), . . . ,S(k)) given N(t) = k as ordered statistics of iid
uniformly distributed random variables. Specifically, we have

f
S(1),...,S(k)

∣∣ N(t)=k
(t1, . . . , tk) = k!

k

∏
i=1

1{ti6t}
t

.

Proof. Given N(t) = k, we can denote the points of the Poisson process in (0, t] by S1, . . . ,Sk. From the above
remark, we know that S1, . . . ,Sk are i.i.d. uniform in (0, t], conditioned on the number of points N(t) = k.
Hence, we can write

F
S1,...,Sk

∣∣ N(t)=k
(t1, . . . , tk) = P(∩k

i=1 {Si ∈ (0, ti]}
∣∣ {N(t) = k}) =

k

∏
i=1

P({Si ∈ (0, ti]}
∣∣ {Si ∈ (0, t]}) =

k

∏
i=1

ti
t
1{0<ti6t}.

For any permutation σ : [k]→ [k], the order statistics of (Sσ(1), . . . ,Sσ(k)) are identical. Therefore, we can
write the following equality for the events{

S(i) 6 ti

}
= ∪σ:[k]→[k] permutation

{
Sσ(i) 6 ti

}
.

Hence, the result follows since

P(∩k
i=1

{
S(i) ∈ (0, ti]

} ∣∣ {N(t) = k}) = ∑
σ:[k]→[k]

P(∩k
i=1

{
Sσ(i) ∈ (0, ti]

} ∣∣ {N(t) = k}).
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