
Lecture-28: Poisson processes: Equivalences

1 Equivalent characterizations

Definition 1.1. A counting process N has the completely independence property, if for any collection of
finite disjoint and bounded sets A1, . . . , Ak ∈ B,

P
k⋂

i=1

{N(Ai) = ni} =
k

∏
i=1

P{N(Ai) = ni}.

Theorem 1.2. Distribution of a simple point process is completely determined by void probabilities.

Theorem 1.3 (Equivalences). Following are equivalent for a simple counting process N : Ω→Z+
B.

i Process N is Poisson with locally finite intensity measure Λ.

ii For each bounded A ∈ B, we have P{N(A) = 0} = e−Λ(A).

iii For each bounded A ∈ B, the number of points N(A) is a Poisson with parameter Λ(A).

iv Process N has the completely independence property, and EN(A) = Λ(A).

Proof. We will show that i =⇒ ii =⇒ iii =⇒ iv =⇒ i .

i =⇒ ii It follows from the definition of Poisson point processes and definition of Poisson random variables.

ii =⇒ iii From Theorem 1.2, we know that void probabilities determine the entire distribution. Further, we
observe that

∑
k∈N

P{N(A) = k} = e−Λ(A) ∑
k∈N

Λ(A)k

k!
.

iii =⇒ iv We will show this in two steps.

Mean: Since the distribution of random variable N(A) is Poisson, it has mean EN(A) = Λ(A).
CIP: For disjoint and bounded A1, . . . , Ak ∈ B and A = ∪k

i=1 Ai, we have N(A) = N(A1) + . . . N(A1).
Taking expectations on both sides, and from the linearity of expectation, we get

Λ(A) = Λ(A1) + · · ·+ Λ(Ak).

From the number of partitions n1 + · · ·+ nk = n, we can write

P{N(A) = n} = 1
n! ∑

n1+···+nk=n

(
n

n1, . . . ,nk

)
P{N(A1) = n1, . . . , N(Ak) = nk} .

Using the definition of Poisson distribution, we can write the left hand side of the above equation
as

P{N(A) = n}= e−Λ(A) Λ(A)n

n!
=

k

∏
i=1

e−Λ(Ai)
(∑k

i=1 Λ(Ai))
n

n!
=

1
n! ∑

n1+···+nk=n

(
n

n1, . . . ,nk

) k

∏
i=1

e−Λ(Ai)Λ(Ai))
ni .

Equating each term in the summation, we get

P{N(A1) = n1, . . . , N(Ak) = nk} =
k

∏
i=1

P{N(Ai) = ni} .
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iv =⇒ i Due to complete independence property and since void probabilities describe the entire distribution,
it suffices to show that P{N(A) = 0} = e−Λ(A) for all bounded A ∈ B. For disjoint and bounded
A1, . . . , Ak ∈ B and A = ∪k

i=1 Ai, we have

Λ(A) =
k

∑
i=1

Λ(Ai), and − ln P{N(A) = 0} = −
k

∑
i=1

ln P{N(Ai) = 0} .

This implies that − ln P{N(A) = 0} = Λ(A), and the result follows.

Corollary 1.4 (Poisson process on the half-line). A random process N : Ω→Z
R+
+ indexed by time t ∈Z+ is a

Poisson process with intensity measure Λ iff

(a) Starting with N(0) = 0, the process N(t) takes a non-negative integer value for all t ∈R+;

(b) the increment N(t + s)− N(t) is surely nonnegative for any s ∈R+;

(c) the increments N(t1), N(t2)−N(t1), . . . , N(tn)−N(tn−1) are independent for any 0 < t1 < t2 < · · ·< tn−1 <
tn;

(d) the increment N(t + s)− N(t) is distributed as Poisson random variable with parameter Λ((t, t + s]).

The Poisson process is homogeneous with intensity λ, iff in addition to conditions (a), (b), (c), the distribution of the
increment N(t + s)− N(t) depends on the value s ∈ R+ but is independent of t ∈ R+. That, is the increments are
stationary.

Proof. We have already seen that definition of Poisson processes implies all four conditions. Conditions (a)
and (b) imply that N is a simple counting process on the half-line, condition (c) is the complete indepen-
dence property of the point process, and condition (d) provides the intensity measure. The result follows
from the equivalence iv in Theorem 1.3.

A Memoryless distribution

Definition A.1. A random variable X with continuous support on R+, is called memoryless if for all posi-
tive reals t, s ∈R+, we have

P{X > s} = P({X > t + s}
∣∣ {X > t}).

Proposition A.2. The unique memoryless distribution function with continuous support on R+ is the exponential
distribution.

Proof. Let X be a random variable with a memoryless distribution function F : R+ → [0,1]. It follows that
F̄(t), 1− F(t) satisfies the semi-group property

F̄(t + s) = F̄(t)F̄(s).

Since F̄(x) = P{X > x} is non-increasing in x∈R+, we have F̄(x) = eθx, for some θ < 0 from Lemma A.3.

Lemma A.3. A unique non-negative right continuous function f : R+→R+ satisfying the semigroup property

f (t + s) = f (t) f (s), for all t, s ∈R+

is f (t) = eθt, where θ = log f (1).

Proof. Clearly, we have f (0) = f 2(0). Since f is non-negative, it means f (0) = 1. By definition of θ and
induction for m,n ∈Z+, we see that

f (m) = f (1)m = eθm, eθ = f (1) = f (1/n)n.

Let q ∈ Q, then it can be written as m/n,n 6= 0 for some m,n ∈ Z+. Hence, it is clear that for all q ∈ Q+,
we have f (q) = eθq. either unity or zero. Note, that f is a right continuous function and is non-negative.
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Now, we can show that f is exponential for any real positive t by taking a sequence of rational numbers
(qn : n ∈N) decreasing to t. From right continuity of f , we obtain

f (t) = lim
qn↓t

f (qn) = lim
qn↓t

eθqn = eθt.
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