Lecture-28: Poisson processes: Equivalences

1 Equivalent characterizations

Definition 1.1. A counting process *N* has the **completely independence property**, if for any collection of finite disjoint and bounded sets $A_1, \ldots, A_k \in \mathcal{B}$,

$$P\bigcap_{i=1}^{k} \{N(A_i) = n_i\} = \prod_{i=1}^{k} P\{N(A_i) = n_i\}.$$

Theorem 1.2. Distribution of a simple point process is completely determined by void probabilities.

Theorem 1.3 (Equivalences). Following are equivalent for a simple counting process $N : \Omega \to \mathbb{Z}_+^{\mathcal{B}}$.

i₋ *Process* N *is Poisson with locally finite intensity measure* Λ *.*

*ii*_ For each bounded $A \in \mathcal{B}$, we have $P\{N(A) = 0\} = e^{-\Lambda(A)}$.

*iii*_ For each bounded $A \in \mathcal{B}$, the number of points N(A) is a Poisson with parameter $\Lambda(A)$.

*iv*_ *Process N has the completely independence property, and* $\mathbb{E}N(A) = \Lambda(A)$ *.*

Proof. We will show that $i_{-} \Longrightarrow ii_{-} \Longrightarrow iii_{-} \Longrightarrow iv_{-} \Longrightarrow i_{-}$.

 $i \implies ii_{-}$ It follows from the definition of Poisson point processes and definition of Poisson random variables.

 $ii \implies iii_{-}$ From Theorem 1.2, we know that void probabilities determine the entire distribution. Further, we observe that

$$\sum_{k\in\mathbb{N}} P\{N(A)=k\} = e^{-\Lambda(A)} \sum_{k\in\mathbb{N}} \frac{\Lambda(A)^{\kappa}}{k!}.$$

 $iii \implies iv_-$ We will show this in two steps.

- Mean: Since the distribution of random variable N(A) is Poisson, it has mean $\mathbb{E}N(A) = \Lambda(A)$.
- CIP: For disjoint and bounded $A_1, ..., A_k \in \mathcal{B}$ and $A = \bigcup_{i=1}^k A_i$, we have $N(A) = N(A_1) + ... N(A_1)$. Taking expectations on both sides, and from the linearity of expectation, we get

$$\Lambda(A) = \Lambda(A_1) + \dots + \Lambda(A_k)$$

From the number of partitions $n_1 + \cdots + n_k = n$, we can write

$$P\{N(A) = n\} = \frac{1}{n!} \sum_{n_1 + \dots + n_k = n} \binom{n}{n_1, \dots, n_k} P\{N(A_1) = n_1, \dots, N(A_k) = n_k\}.$$

Using the definition of Poisson distribution, we can write the left hand side of the above equation as

$$P\{N(A) = n\} = e^{-\Lambda(A)} \frac{\Lambda(A)^n}{n!} = \prod_{i=1}^k e^{-\Lambda(A_i)} \frac{(\sum_{i=1}^k \Lambda(A_i))^n}{n!} = \frac{1}{n!} \sum_{n_1 + \dots + n_k = n} \binom{n}{n_1, \dots, n_k} \prod_{i=1}^k e^{-\Lambda(A_i)} \Lambda(A_i)^{n_i}$$

Equating each term in the summation, we get

$$P\{N(A_1) = n_1, \dots, N(A_k) = n_k\} = \prod_{i=1}^k P\{N(A_i) = n_i\}$$

 $iv \implies i_{-}$ Due to complete independence property and since void probabilities describe the entire distribution, it suffices to show that $P\{N(A) = 0\} = e^{-\Lambda(A)}$ for all bounded $A \in \mathcal{B}$. For disjoint and bounded $A_1, \ldots, A_k \in \mathcal{B}$ and $A = \bigcup_{i=1}^k A_i$, we have

$$\Lambda(A) = \sum_{i=1}^{k} \Lambda(A_i), \quad \text{and} \quad -\ln P\{N(A) = 0\} = -\sum_{i=1}^{k} \ln P\{N(A_i) = 0\}.$$

This implies that $-\ln P \{N(A) = 0\} = \Lambda(A)$, and the result follows.

Corollary 1.4 (Poisson process on the half-line). A random process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ indexed by time $t \in \mathbb{Z}_+$ is a Poisson process with intensity measure Λ iff

- (a) Starting with N(0) = 0, the process N(t) takes a non-negative integer value for all $t \in \mathbb{R}_+$;
- (b) the increment N(t+s) N(t) is surely nonnegative for any $s \in \mathbb{R}_+$;
- (c) the increments $N(t_1), N(t_2) N(t_1), \dots, N(t_n) N(t_{n-1})$ are independent for any $0 < t_1 < t_2 < \dots < t_{n-1} < t_n$;
- (d) the increment N(t+s) N(t) is distributed as Poisson random variable with parameter $\Lambda((t,t+s])$.

The Poisson process is homogeneous with intensity λ , iff in addition to conditions (a), (b), (c), the distribution of the increment N(t + s) - N(t) depends on the value $s \in \mathbb{R}_+$ but is independent of $t \in \mathbb{R}_+$. That, is the increments are stationary.

Proof. We have already seen that definition of Poisson processes implies all four conditions. Conditions (a) and (b) imply that N is a simple counting process on the half-line, condition (c) is the complete independence property of the point process, and condition (d) provides the intensity measure. The result follows from the equivalence iv_- in Theorem 1.3.

A Memoryless distribution

Definition A.1. A random variable *X* with continuous support on \mathbb{R}_+ , is called **memoryless** if for all positive reals *t*, *s* $\in \mathbb{R}_+$, we have

$$P\{X > s\} = P(\{X > t + s\} \mid \{X > t\}).$$

Proposition A.2. *The unique memoryless distribution function with continuous support on* \mathbb{R}_+ *is the exponential distribution.*

Proof. Let *X* be a random variable with a memoryless distribution function $F : \mathbb{R}_+ \to [0,1]$. It follows that $\overline{F}(t) \triangleq 1 - F(t)$ satisfies the semi-group property

$$\bar{F}(t+s) = \bar{F}(t)\bar{F}(s).$$

Since $\bar{F}(x) = P\{X > x\}$ is non-increasing in $x \in \mathbb{R}_+$, we have $\bar{F}(x) = e^{\theta x}$, for some $\theta < 0$ from Lemma A.3.

Lemma A.3. A unique non-negative right continuous function $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying the semigroup property

$$f(t+s) = f(t)f(s)$$
, for all $t, s \in \mathbb{R}_+$

is $f(t) = e^{\theta t}$, where $\theta = \log f(1)$.

Proof. Clearly, we have $f(0) = f^2(0)$. Since f is non-negative, it means f(0) = 1. By definition of θ and induction for $m, n \in \mathbb{Z}^+$, we see that

$$f(m) = f(1)^m = e^{\theta m},$$
 $e^{\theta} = f(1) = f(1/n)^n.$

Let $q \in \mathbb{Q}$, then it can be written as $m/n, n \neq 0$ for some $m, n \in \mathbb{Z}^+$. Hence, it is clear that for all $q \in \mathbb{Q}^+$, we have $f(q) = e^{\theta q}$. either unity or zero. Note, that f is a right continuous function and is non-negative.

Now, we can show that *f* is exponential for any real positive *t* by taking a sequence of rational numbers $(q_n : n \in \mathbb{N})$ decreasing to *t*. From right continuity of *f*, we obtain

$$f(t) = \lim_{q_n \downarrow t} f(q_n) = \lim_{q_n \downarrow t} e^{\theta q_n} = e^{\theta t}.$$